微服务---分布式缓存redis进阶-redis集群部署

news2024/12/28 6:26:34

分布式缓存

– 基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

image-20210725144240631

0.学习目标

1.Redis持久化

Redis有两种持久化方案:

  • RDB持久化
  • AOF持久化

1.1.RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时

1)save命令

执行下面的命令,可以立即执行一次RDB:

image-20210725144536958

save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

image-20210725144725943

这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;
  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

image-20210725151319695

1.1.3.小结

RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间
  • 子进程读取内存数据并写入新的RDB文件
  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时
  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

1.2.AOF持久化

1.2.1.AOF原理

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

image-20210725151543640

1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

image-20210725151654046

1.2.3.AOF文件重写

因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

image-20210725151729118

如图,AOF原本有三个命令,但是set num 123 和 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。

所以重写命令后,AOF文件内容就是:mset name jack num 666

Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

image-20210725151940515

2.Redis主从

2.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

image-20210725152037611
首先需要安装Redis所需要的依赖:

yum install -y gcc tcl

解压缩:

tar -xvf redis-6.2.4.tar.gz

进入redis目录:

cd redis-6.2.4

运行编译命令:

make && make install

如果没有出错,应该就安装成功了。

然后修改redis.conf文件中的一些配置:

# 绑定地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问
bind 0.0.0.0
# 数据库数量,设置为1
databases 1

启动Redis:

redis-server redis.conf

停止redis服务:

redis-cli shutdown

2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

image-20210725152222497

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

image-20210725152700914

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

image-20210725153201086

那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

image-20210725153359022

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

image-20210725153524190

直到数组被填满:

image-20210725153715910

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

image-20210725153937031

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

image-20210725154155984

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

image-20210725154216392

2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

image-20210725154405899

2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

image-20210725154528072

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

image-20210725154632354

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

image-20210725154816841

3.1.4.小结

Sentinel的三个作用是什么?

  • 监控
  • 故障转移
  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one
  • 然后让所有节点都执行slaveof 新master
  • 修改故障节点配置,添加slaveof 新master

3.2.搭建哨兵集群

3.2.1.集群结构

这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

在这里插入图片描述

三个sentinel实例信息如下:

节点IPPORT
s1192.168.150.10127001
s2192.168.150.10127002
s3192.168.150.10127003

3.2.2.准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:

在这里插入图片描述

然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口
  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息
    • mymaster:主节点名称,自定义,任意写
    • 192.168.150.101 7001:主节点的ip和端口
    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

3.2.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf

启动后:

在这里插入图片描述

3.2.4.测试

尝试让master节点7001宕机,查看sentinel日志:

在这里插入图片描述

查看7003的日志:
在这里插入图片描述

查看7002的日志:

在这里插入图片描述

3.3.RedisTemplate

在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.1.导入Demo工程

3.3.2.引入依赖

在项目的pom文件中引入依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster
      nodes:
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4.Redis分片集群

4.1.搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

image-20210725155747294

分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

4.1.1.集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:

image-20210702164116027

这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002master
192.168.150.1017003master
192.168.150.1018001slave
192.168.150.1018002slave
192.168.150.1018003slave

4.1.2.准备实例和配置

删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

4.1.3.启动

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:

image-20210702174255799

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

4.1.4.创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

# 安装依赖
yum -y install zlib ruby rubygems
gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

redis-cli --cluster create --cluster-replicas 1 192.168.0.101:7001 192.168.0.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令
  • create:代表是创建集群
  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

image-20210702181101969

这里输入yes,则集群开始创建:

image-20210702181215705

通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

image-20210702181922809

4.1.5.测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

image-20210702182343979

集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

image-20210702182602145

4.2.散列插槽

4.2.1.插槽原理

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

image-20210725155820320

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{a}num,则根据a计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

image-20210725155850200

如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点。

到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例
  • 根据key的有效部分计算哈希值,对16384取余
  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3.集群伸缩

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

image-20210725160138290

比如,添加节点的命令:

image-20210725160448139

4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004
  • 添加7004到之前的集群,并作为一个master节点
  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中
  • 将部分插槽分配到新插槽

4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3.添加新节点到redis

添加节点的语法如下:

image-20210725160448139

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

image-20210725161007099

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

image-20210725161241793

如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

image-20210725161401925

具体命令如下:

建立连接:

image-20210725161506241

得到下面的反馈:

image-20210725161540841

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

image-20210725161637152

那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

image-20210725161731738

复制这个id,然后拷贝到刚才的控制台后:

image-20210725161817642

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分
  • 具体的id:目标节点的id
  • done:没有了

这里我们要从7001获取,因此填写7001的id:

image-20210725162030478

填完后,点击done,这样插槽转移就准备好了:

image-20210725162101228

确认要转移吗?输入yes:

然后,通过命令查看结果:

image-20210725162145497

可以看到:

image-20210725162224058

目的达成。

4.4.故障转移

集群初识状态是这样的:

image-20210727161152065

其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

image-20210725162319490

3)最后是确定下线,自动提升一个slave为新的master:

image-20210725162408979

4)当7002再次启动,就会变为一个slave节点了:

image-20210727160803386

4.4.2.手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

image-20210725162441407

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩
  • force:省略了对offset的一致性校验
  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:

image-20210727160037766

效果:

image-20210727161152065

4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/484814.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Kali搭建SSH弱口令靶机并用Nmap实现排查

前言正文1、为宿主主机配置nmap环境变量2、为宿主主机和靶机配置同一局域网环境3、为靶机配置弱口令4、为靶机配置SSH服务[^2]5、主机用Nmap对靶机进行扫描5、主机用弱口令工具对靶机渗透6、验证弱口令 参考文献 前言 有时候&#xff0c;需要我们搭建SSH弱口令环境&#xff0c…

【数据结构】超详细之单向链表(C语言实现)

文章目录 前言一、单向链表是什么&#xff1f;二、单向链表实现步骤 1.打印链表数据以及实现链表头插2.实现链表尾插3.实现链表头删尾删4.实现链表查找5.实现链表在pos之前/之后插入6.实现链表删除pos位置的值7.实现链表删除pos之后位置的值总结 前言 今天我要介绍单向链表&am…

可变参数列表的使用与原理

序言 我们自己编写的函数通常参数是固定的&#xff0c;这样使得某些功能不能得到我们想要的结果&#xff0c;比如我们想求出2个数的最大值的代码不能用于求处3个数的最大值&#xff0c;因此&#xff0c;C语言定义了可变参数列表来编写参数个数不确定的函数。具有可变参数列表的…

Golang每日一练(leetDay0054)

目录 157. 用 Read4 读取 N 个字符 Read-n-characters-given-read4 &#x1f31f;&#x1f31f; 158. 用 Read4 读取 N 个字符 II Read-n-characters-given-read4-ii-call-multiple-times II &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Gol…

拿捏SQL:以“统计连续登录天数超过3天的用户“为例拿捏同类型SQL需求

文章目录 [TOC](文章目录) 一、介绍案例&#xff1a;以"统计连续登录天数超过3天的用户"为需求。数据准备方案1&#xff1a;常规思路针对对数据user_id分组&#xff0c;根据用户的活动日期排序用登录日期与rn求date_sub&#xff0c;得到的差值日期如果是相等的&#…

Python非线性回归预测模型实验完整版

非线性回归预测模型 实验目的 通过非线性回归预测模型&#xff0c;掌握预测模型的建立和应用方法&#xff0c;了解非线性回归模型的基本原理 实验内容 非线性回归预测模型 实验步骤和过程 (1)第一步&#xff1a;学习非线性回归预测模型相关知识。 非线性回归预测模型是指…

Spring框架中的单例Beans是线程安全的么?

在Spring框架中&#xff0c;单例Beans默认是线程安全的。 当你在Spring框架中声明一个单例Bean并配置为默认的单例作用域时&#xff0c;Spring会确保对该Bean的并发访问是线程安全的。以下是一个简单的代码演示&#xff1a; 假设我们有一个名为 SingletonBean 的单例 Bean 类…

Mysql目录结构

一、目录结构 <1> 主要目录结构 find / -name mysql<2> 数据库文件目录 目录&#xff1a;/var/lib/mysql/ 配置方式&#xff1a;show variables like ‘datadir’; <3> 相关命令目录 目录&#xff1a;/usr/bin&#xff08;mysqla…

VMware安装CentOS7遇到的问题记录

文章目录 1、执行ifconfig后&#xff0c;ip地址不显示解决方法&#xff1a; 2、CentOS ip地址老是变动&#xff0c;配置固定ip解决方法 1、执行ifconfig后&#xff0c;ip地址不显示 问题背景&#xff1a;VMware安装centos7后&#xff0c;启动虚拟机&#xff0c;在终端中执行if…

MySQL示例数据库(MySQL Sample Databases) 之 sakila数据库

文章目录 MySQL示例数据库(MySQL Sample Databases) 之 sakila数据库官方示例数据介绍sakila数据库sakila数据库安装sakila/sakila-schema.sql的脚本内容sakila的结构参考 MySQL示例数据库(MySQL Sample Databases) 之 sakila数据库 官方示例数据介绍 MySQL 官方提供了多个示…

Mysql存储json格式数据需要掌握的

目录 一、前言二、什么是 JSON三、Mysql当中json函数四、JSON值部分更新4.1.使用 Partial Updates 的条件4.2.如何在 binlog 中开启 Partial Updates4.3.关于 Partial Updates 的性能测试 五、如何对 JSON 字段创建索引六、mybatis取json类型的数据七、总结 一、前言 最近做的一…

[实训] 实验1-SPI数据传输基础实验(上)

目 录​​​​​​​ 一、实验目的 二、实验仪器及器件 三、实验内容及原理 四、实验步骤​​​​​​​ 五、实验测试数据表格记录 六、实验数据分析及处理 七、实验结论与感悟 一、实验目的 使用FPGA/ARM实现SPI数据传输实验&#xff1b;实现数据传输程序的编写、下载…

【项目原理】多点触摸屏驱动原理

一、屏幕介绍 ATK-7016 这款屏幕其实是由 TFT LCD触摸屏组合起来的。底下是 LCD 面板&#xff0c;上面是触摸面板&#xff0c;将两个封装到一起就成了带有触摸屏的 LCD 屏幕。电容触摸屏也是需要一个驱动 IC的&#xff0c;驱动 IC 一般会提供一个 I2C 接口给主控制器&#xff…

[实训] 实验1-SPI数据传输基础实验(下)

目录 五、实验测试数据表格记录 六、实验数据分析及处理 七、实验结论与感悟 五、实验测试数据表格记录 实验现象数码管显示见第四节图4.4&#xff0c;示波器测量结果见下列图片。 图5.1 RST、MOSI/MISO波形测量结果 图5.2 SCLK、MOSI/MISO波形测量结果 仅调整示波器波…

C生万物 | 剖析函数指针经典应用 —— 回调函数

不懂函数指针的老铁可以先看看这篇文章【指针函数与函数指针】&#xff0c;上车&#xff0c;准备出发&#x1f697; 文章目录 一、回调函数的概念二、为什么要使用回调函数&#xff1f;三、回调函数使用场景场景一&#xff1a;模拟计算器的加减乘除场景二&#xff1a;模拟qsort…

MySQL集群方案总结与方案原理

前言 在给自己做着玩的一个项目准备数据库集群&#xff0c;顺带自己大致系统复习并记录一下。 单节点mysql存在的常见问题 当数据量和并发量上去后&#xff0c;单节点数据库无法满足大并发时性能上的要求。单节点的MySQL无法满足高可用&#xff0c;数据库宕机或者意外中断等故障…

数据结构学习分享之双向链表详解

数据结构第四课 1.前言2. 结构分析3. 双链表的实现3.1 初始化结构3.2 初始化函数3.3 尾插函数3.4 尾删函数3.5 头插函数3.6 头删函数3.7 销毁链表3.8 其他函数 4. 缓存利用率5. 总结 1.前言 &#x1f493;博主CSDN:杭电码农-NEO&#x1f493;&#x1f389;&#x1f389;&#x…

Python(一) 基础二(语句、文件读写)

1.语句 1.1.if…elif…else 类似于java的if…else if…else语句 1.1.1.判断条件 比较运算符: 、>、<、<、>、!、is、is not、in、not in 1.1.2.和is的区别 list_1 [aaa, bbb] list_2 [aaa, bbb] print(list_1 list_2) #结果:True print(list_1 is list_2)…

async await

async await async await 都是修饰符&#xff0c;修饰函数的。 async/await一定是成对出现的。比如用async也没有什么太大意义。只要函数体中出现了await&#xff0c;则当前函数必须用async来修饰。 用async修饰的函数&#xff0c;相当于用promise包裹起来。其实相当于把同步修…

基于jeecgboot的OA日程安排开发(一)

日程安排也是OA里的一项重要功能&#xff0c;所以基于jeecgboot开发这个日程安排。 日程安排主要涉及以下几个方面&#xff1a; 1、数据库方面&#xff0c;主要是分日历与日程 日历可以分个人日历与工作日历&#xff0c;一般情况下&#xff0c;个人日历只给自己查看&#xff0…