【量化交易笔记】5.SMA,EMA 和WMA区别

news2024/11/24 14:46:07

股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。

SMA 简单移动平均线(Simple Moving Average)

SMA是移动平均线的简称,全称是简单移动平均线(Simple Moving Average)。它是历史股价平均值的简单算术平均数。计算SMA,只需要将一段时间内股票收盘价的总和除以这段时间内的交易日数。

例如,计算过去5天的SMA,只需要将这5天的股票收盘价相加,再除以5,即可得出SMA。

SMA是一种较为简单的移动平均方式,经常被用于判断短期的股票趋势。由于SMA只是简单地考虑了过去一段时间的股票价格,因此它会被短期价格波动所影响,因此可能不如其他平均值算法准确。

EMA 指数移动平均线(Exponential Moving Average)

EMA是指数移动平均线(Exponential Moving Average)。与SMA不同,EMA并不是简单的日平均数,而是考虑到股票价格的整体趋势,即将较大的权重放在了最近的股票价格上。

在EMA的计算中,最近的股票价格会得到较高的权重,而较早的股票价格的权重则会下降。计算过程中需要指定EMA的时间周期,通常包括12天和26天等。

对于EMA的计算,需要先计算出一个起始的EMA值。这可以通过计算一段时间内的SMA来得到,然后用下面的计算公式去计算:

当前EMA值 = ((当前收盘价 - 上一个EMA值) * 平滑指数)+ 上一个EMA值
平滑指数可以通过下面的方法来计算:
平滑指数 = 2 /(时间周期 + 1)
EMA的计算方法相对于SMA更为复杂,但它可以更好地反映当前的市场趋势。
y t = x t + ( 1 − α ) x t − 1 + ( 1 − α ) 2 x t − 2 + . . . + ( 1 − α ) t x 0 1 + ( 1 − α ) + ( 1 − α ) 2 + . . . + ( 1 − α ) t y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} yt=1+(1α)+(1α)2+...+(1α)txt+(1α)xt1+(1α)2xt2+...+(1α)tx0
其中, t t t 为窗口大小, α \alpha α 为平滑因子( 0 < α ≤ 1 0 \lt \alpha \leq 1 0<α1 可根据公式计算,如 2 / ( 1 + t ) 2/(1+ t ) 2/(1+t),也可自定义), ( 1 − α ) i (1- \alpha) ^ i (1α)i 为呈指数增加的权重,期数离预测时刻越近权重越大。

y 0 = x 0 y t = ( 1 − α ) y t − 1 + α x t , \begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split} y0yt=x0=(1α)yt1+αxt,

# 直接用 Pandas 的ewm 函数
pandas.ewm(span=n)

WMA 加权移动平均线(Weighted Moving Average)

WMA是加权移动平均线(Weighted Moving Average),它是一种考虑过去时间内价格变化和波动的Moving Average方式。与EMA类似,WMA也是将较大的权重放在较近的数据上,但与EMA不同的是,它使用的是带权的平均算法。

在WMA中,每个数据都被通过给定的权重,然后再求和得到加权平均值。通常情况下,较近的数据会有较大的权重,而较远的数据权重会下降,WMA有助于平滑股票价格的波动,并根据相应的趋势给出合适的建议。

WMA的计算也需要指定一个时间周期,并且需要先计算出一段时间内的总权值,用下面的公式计算总权值后,再使用上面的加权平均公式计算WMA:

保存总权值 = 从 1 开始的周期数 * 周期内每个数据的权重之和
每个数据的权重 = (当前周期数 + 1)- 当前数据的位置
WMA是比SMA更为准确的一种移动平均计算方法,但它的计算也更为复杂。

W M A t ( n ) = w 1 x t + w 2 x t − 1 + . . . + w n − 1 x t − n + 2 + w n x t − n + 1 w 1 + w 2 + . . . + w n WMA_t(n) = \frac{w_1x_t + w_2x_{t-1} + ... + w_{n-1}x_{t-n+2} +w_nx_{t-n+1} }{w_1+w_2+ ... + w_n } WMAt(n)=w1+w2+...+wnw1xt+w2xt1+...+wn1xtn+2+wnxtn+1

其中, n n n为窗口大小, W M A t WMA_t WMAt为t时刻的移动平均值。

技术分析中,权重系数为n~0,即最近一个数值的权重为n,次近的为n-1,如此类推,直到0。
W M A t ( n ) = n x t + ( n − 1 ) x t − 1 + . . . + 2 x t − n + 2 + x t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA_t(n) = \frac{nx_t + (n-1)x_{t-1} + ... + 2x_{t-n+2} +x_{t-n+1} }{n+(n-1)+ ... + 2+1 } WMAt(n)=n+n1)+...+2+1nxt+(n1)xt1+...+2xtn+2+xtn+1

def WMA(close, n):
    weights = np.array(range(1, n+1))
    sum_weights = np.sum(weights)

    res = close.rolling(window=n).apply(lambda x: np.sum(weights*x) / sum_weights, raw=False)
    return res

#或
def WMA(close, n):
    return close.rolling(window=n).apply(lambda x: x[::-1].cumsum().sum() * 2 / n / (n + 1))

方法对比分析

从权重思维来看,三种方法都可以认为是加权平均。SMA:权重系数一致;WMA:权重系数随时间间隔线性递减;EMA:权重系数随时间间隔指数递减。 如下图:
下面以 t=30 作图

WMA 是 线性递减,EMA是指数递减

结论

三种平均值算法各有优缺点,你需要根据你的股票市场分析需要及实际情况来决定使用哪种算法。如果你的分析需要考虑。EMA,WMA 即 远离当前时间,影响较小,前一天权重大影响最大。因此在股票很多指标上都用EMA 来代替SMA,如MACD等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/480937.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

参与辅助服务的用户侧储能优化配置及经济分析(matlab代码)

目录 1 主要内容 目标函数 2 部分程序 3 程序结果 4 程序链接 1 主要内容 该程序方法复现《参与辅助服务的用户侧储能优化配置及经济分析》&#xff0c;首先&#xff0c; 建立了用户侧储能的全生命周期成本和考虑辅助服务的收益模型&#xff1b;其次&#xff0c;在两部…

一文读懂UML用例图

一、概述 用例是描述系统需求的一种手段&#xff0c;即系统应该做什么。用例图由参与者、用例和主题组成。每个用例的主题都代表了一个用例所适用的系统。用户和任何其他可以与主体交互的系统都被表示为行动者。 用例是一种行为规范。用例的实例指的是紧急行为的发生符合相应…

【前端客栈】基于HTML、CSS、JavaScript的羊了个羊静态仿写页面小游戏

&#x1f3dc;哈喽&#xff0c;大家好&#xff0c;我是小浪。前段时间羊了个羊火遍了大江南北&#xff0c;大家是否都通过第二关了呢&#xff1f;哈哈&#xff0c;没关系&#xff0c;既然通不过&#xff0c;那咋们不如自己来做一个这样的羊了个羊的仿写页面&#xff0c;学会了赶…

文本中的关键词提取方法

目录 1. TF-IDF&#xff08;Term Frequency-Inverse Document Frequency&#xff09;算法&#xff1a; 2. TextRank算法&#xff1a; 3. LDA&#xff08;Latent Dirichlet Allocation&#xff09;算法&#xff1a; 4. RAKE&#xff08;Rapid Automatic Keyword Extraction&…

基于SLM调制器,MIT研发高效率全息显示方案

此前&#xff0c;青亭网曾报道过NVIDIA、三星、剑桥大学等对空间光调制器&#xff08;SLM&#xff09;全息方案的探索。空间光调制器可调节光波的空间分布&#xff0c;在电驱动信号控制下&#xff0c;可改变光在空间中传播的振幅、强度、相位、偏振态等特性&#xff0c;从而形成…

MySQL性能优化之(explain)工具

慢SQL的定位 在MySQL当中&#xff0c;我们有时候写的SQL执行效率太慢此时我们需要将其优化。但是SQL可能非常的多&#xff0c;难道我们一条一条的进行查看吗&#xff1f;在MySQL当当中我们可以查看慢查询日志&#xff0c;看看那些SQL这么慢。但是这个默认情况下这个慢查询日志…

sqoop使用

sqoop使用 1. 导入数据2. 从mysql向hive导入数据2.1 导入用户信息表 2.导入订单表2.2 导入订单表2.3 导入商品信息表2.4 导入国家信息表2.5 导入省份信息表2.6 导入城市信息表2.7 创建hive临时表文件 在使用sqoop之前&#xff0c;需要提前启动hadoop, yarn和对应的数据库mysql …

当音乐遇上Python:用Pydub自动分割音频

&#x1f3b5; &#x1f3b5; &#x1f3b5; 当音乐遇上Python&#xff1a;用Pydub自动分割音频 随着短视频应用的普及&#xff0c;越来越多人开始了解并尝试制作自己的短视频作品。而在制作短视频时&#xff0c;背景音乐的选择和使用也是非常重要的一步。很多人喜欢选择一首长…

倒立摆控制器的设计(分别用极点配置,LQR方法,Robust H-无穷方法)

G01倒立摆控制器设计 Author&#xff1a;DargonNote date&#xff1a;2020/12/13课程用书&#xff1a;LMIs in Control Systems Analysis,Design and Applications 1,倒立摆控制系统简介 倒立摆系统是一个复杂的控制系统&#xff0c;具有非线性、强耦合、多变量、不稳定等特…

干货 | 正念,寻求属于你的存在之道

Hello,大家好&#xff01; 这里是壹脑云科研圈&#xff0c;我是喵君姐姐~ 你是否也曾感到内心无法平静&#xff1f;如果是&#xff0c;不妨了解一下正念&#xff0c;它或许能为你带来改变。 正念作为一种古老的修行方式&#xff0c;如今已经在世界范围内广为流传&#xff0c;…

《Netty》从零开始学netty源码(四十九)之PoolArena

目录 PoolArenaallocate()创建newByteBuf()分配具体的内存空间allocate() PoolArena Netty中分配内存是委托给PoolArena来管理的&#xff0c;它主要有两个实现类&#xff1a; 默认情况下使用的DirectArena&#xff0c;它的数据结构如下&#xff1a; 从属性中我们看到PoolA…

人生若只如初见,你不来看看Django吗

前言 本文介绍python三大主流web框架之一的Django框架的基本使用&#xff0c;如何创建django项目&#xff0c;如何运行django项目以及django项目的目录结构&#xff0c;另外django又是如何返回不同的数据和页面&#xff1f; python三大主流web框架 Python有三大主流的web框架…

JS手写实现Promise.all

Promise.all() 方法接收一个 Promise 对象数组作为参数&#xff0c;返回一个新的 Promise 对象。该 Promise 对象在所有的 Promise 对象都成功时才会成功&#xff0c;其中一个 Promise 对象失败时&#xff0c;则该 Promise 对象立即失败。 本篇博客将手写实现 Promise.all() 方…

用于scATAC-seq有监督分类的Cellcano

细胞类型识别是单细胞数据分析的基本步骤。由于高质量参考数据集的可用性&#xff0c;有监督细胞分类方法在scRNA-seq数据中很受欢迎。染色质可及性分析&#xff08;scATAC-seq&#xff09;的最新技术进步为理解表观遗传异质性带来了新的见解。随着scATAC-seq数据集的不断积累&…

第二节课 Linux和shell命令之文件管理与常用命令

命令执行&#xff0c;没有图形页面 文件权限是重点 1.目录树 windous分盘 CDEF 在Linux系统中并不存在C/D/E/F等盘符&#xff0c;Linux系统中的一切文件都是 从“根&#xff08;/&#xff09;”目录开始的&#xff0c;并按照文件系统层次化标准&#xff08;Filesystem Hie…

C++:计算机操作系统:多线程:高并发中的线程

高并发中的线程 一切要从CPU说起PC 程序计数器从CPU到操作系统从进程到线程 从这篇开始&#xff0c;我将会开启高性能&#xff0c;高并发系列&#xff0c;本篇是给系列的开篇&#xff0c;主要关注 多线程以及线程池。 一切要从CPU说起 你可能会有疑问&#xff0c;讲多线程为何…

西门子AmeSim车辆仿真软件在新能源汽车开发中的应用-软件AmeSim2021版分享

利用Simcenter Amesim提高系统仿真产品设计效率&#xff0c;Simcenter Amesim是一个全球领先的集成、可扩展的机、电、液系统仿真平台。它允许设计工程师虚拟评估和优化系统性能。 提高系统仿真效率 Simcenter Amesim是一个领先的集成、可扩展的系统仿真平台&#xff0c;允许…

汇编语言学习笔记一

常用寄存器类型 通用寄存器 AX&#xff0c;BX&#xff0c;CX&#xff0c;DX&#xff0c;这四个寄存器都是16位的 他们也可以拆分为2个8位的寄存器&#xff0c;如AX可以拆分为AH和AL两个8位的寄存器&#xff0c;其它三个也可以如此。 通用寄存器的使用比较简单&#xff0c;如 …