【Vue2.0源码学习】变化侦测篇-Object的变化侦测

news2024/11/23 13:03:50

文章目录

    • 1. 前言
    • 2. 使Object数据变得“可观测”
    • 3. 依赖收集
      • 3.1 什么是依赖收集
      • 3.2 何时收集依赖?何时通知依赖更新?
      • 3.3 把依赖收集到哪里
    • 4. 依赖到底是谁
    • 5. 不足之处
    • 6. 总结

1. 前言

我们知道:数据驱动视图的关键点则在于我们如何知道数据发生了变化,只要知道数据在什么时候变了,那么问题就变得迎刃而解,我们只需在数据变化的时候去通知视图更新即可。

要想知道数据什么时候被读取了或数据什么时候被改写了,其实不难,JS为我们提供了Object.defineProperty方法,通过该方法我们就可以轻松的知道数据在什么时候发生变化。

2. 使Object数据变得“可观测”

数据的每次读和写能够被我们看的见,即我们能够知道数据什么时候被读取了或数据什么时候被改写了,我们将其称为数据变的‘可观测’。

要将数据变的‘可观测’,我们就要借助前言中提到的Object.defineProperty方法了,在本文中,我们就使用这个方法使数据变得“可观测”。

首先,我们定义一个数据对象car

let car = {
  'brand':'BMW',
  'price':3000
}

我们定义了这个car的品牌brandBMW,价格price是3000。现在我们可以通过car.brandcar.price直接读写这个car对应的属性值。但是,当这个car的属性被读取或修改时,我们并不知情。那么应该如何做才能够让car主动告诉我们,它的属性被修改了呢?

接下来,我们使用Object.defineProperty()改写上面的例子:

let car = {}
let val = 3000
Object.defineProperty(car, 'price', {
  enumerable: true,
  configurable: true,
  get(){
    console.log('price属性被读取了')
    return val
  },
  set(newVal){
    console.log('price属性被修改了')
    val = newVal
  }
})

通过Object.defineProperty()方法给car定义了一个price属性,并把这个属性的读和写分别使用get()set()进行拦截,每当该属性进行读或写操作的时候就会触发get()set()。如下图:

在这里插入图片描述

可以看到,car已经可以主动告诉我们它的属性的读写情况了,这也意味着,这个car的数据对象已经是“可观测”的了。

为了把car的所有属性都变得可观测,我们可以编写如下代码:

// 源码位置:src/core/observer/index.js

/**
 * Observer类会通过递归的方式把一个对象的所有属性都转化成可观测对象
 */
export class Observer {
  constructor (value) {
    this.value = value
    // 给value新增一个__ob__属性,值为该value的Observer实例
    // 相当于为value打上标记,表示它已经被转化成响应式了,避免重复操作
    def(value,'__ob__',this)
    if (Array.isArray(value)) {
      // 当value为数组时的逻辑
      // ...
    } else {
      this.walk(value)
    }
  }

  walk (obj: Object) {
    const keys = Object.keys(obj)
    for (let i = 0; i < keys.length; i++) {
      defineReactive(obj, keys[i])
    }
  }
}
/**
 * 使一个对象转化成可观测对象
 * @param { Object } obj 对象
 * @param { String } key 对象的key
 * @param { Any } val 对象的某个key的值
 */
function defineReactive (obj,key,val) {
  // 如果只传了obj和key,那么val = obj[key]
  if (arguments.length === 2) {
    val = obj[key]
  }
  if(typeof val === 'object'){
      new Observer(val)
  }
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    get(){
      console.log(`${key}属性被读取了`);
      return val;
    },
    set(newVal){
      if(val === newVal){
          return
      }
      console.log(`${key}属性被修改了`);
      val = newVal;
    }
  })
}

在上面的代码中,我们定义了observer类,它用来将一个正常的object转换成可观测的object

并且给value新增一个__ob__属性,值为该valueObserver实例。这个操作相当于为value打上标记,表示它已经被转化成响应式了,避免重复操作

然后判断数据的类型,只有object类型的数据才会调用walk将每一个属性转换成getter/setter的形式来侦测变化。 最后,在defineReactive中当传入的属性值还是一个object时使用new observer(val)来递归子属性,这样我们就可以把obj中的所有属性(包括子属性)都转换成getter/seter的形式来侦测变化。 也就是说,只要我们将一个object传到observer中,那么这个object就会变成可观测的、响应式的object

observer类位于源码的src/core/observer/index.js中。

那么现在,我们就可以这样定义car:

let car = new Observer({
  'brand':'BMW',
  'price':3000
})

这样,car的两个属性都变得可观测了。

3. 依赖收集

3.1 什么是依赖收集

在上一章中,我们迈出了第一步:让object数据变的可观测。变的可观测以后,我们就能知道数据什么时候发生了变化,那么当数据发生变化时,我们去通知视图更新就好了。那么问题又来了,视图那么大,我们到底该通知谁去变化?总不能一个数据变化了,把整个视图全部更新一遍吧,这样显然是不合理的。此时,你肯定会想到,视图里谁用到了这个数据就更新谁呗。对!你想的没错,就是这样。

视图里谁用到了这个数据就更新谁,我们换个优雅说法:我们把"谁用到了这个数据"称为"谁依赖了这个数据",我们给每个数据都建一个依赖数组(因为一个数据可能被多处使用),谁依赖了这个数据(即谁用到了这个数据)我们就把谁放入这个依赖数组中,那么当这个数据发生变化的时候,我们就去它对应的依赖数组中,把每个依赖都通知一遍,告诉他们:“你们依赖的数据变啦,你们该更新啦!”。这个过程就是依赖收集。

3.2 何时收集依赖?何时通知依赖更新?

明白了什么是依赖收集后,那么我们到底该在何时收集依赖?又该在何时通知依赖更新?

其实这个问题在上一小节中已经回答了,我们说过:谁用到了这个数据,那么当这个数据变化时就通知谁。所谓谁用到了这个数据,其实就是谁获取了这个数据,而可观测的数据被获取时会触发getter属性,那么我们就可以在getter中收集这个依赖。同样,当这个数据变化时会触发setter属性,那么我们就可以在setter中通知依赖更新。

总结一句话就是:在getter中收集依赖,在setter中通知依赖更新

3.3 把依赖收集到哪里

明白了什么是依赖收集以及何时收集何时通知后,那么我们该把依赖收集到哪里?

在3.1小节中也说了,我们给每个数据都建一个依赖数组,谁依赖了这个数据我们就把谁放入这个依赖数组中。单单用一个数组来存放依赖的话,功能好像有点欠缺并且代码过于耦合。我们应该将依赖数组的功能扩展一下,更好的做法是我们应该为每一个数据都建立一个依赖管理器,把这个数据所有的依赖都管理起来。OK,到这里,我们的依赖管理器Dep类应运而生,代码如下:

// 源码位置:src/core/observer/dep.js
export default class Dep {
  constructor () {
    this.subs = []
  }

  addSub (sub) {
    this.subs.push(sub)
  }
  // 删除一个依赖
  removeSub (sub) {
    remove(this.subs, sub)
  }
  // 添加一个依赖
  depend () {
    if (window.target) {
      this.addSub(window.target)
    }
  }
  // 通知所有依赖更新
  notify () {
    const subs = this.subs.slice()
    for (let i = 0, l = subs.length; i < l; i++) {
      subs[i].update()
    }
  }
}

/**
 * Remove an item from an array
 */
export function remove (arr, item) {
  if (arr.length) {
    const index = arr.indexOf(item)
    if (index > -1) {
      return arr.splice(index, 1)
    }
  }
}

在上面的依赖管理器Dep类中,我们先初始化了一个subs数组,用来存放依赖,并且定义了几个实例方法用来对依赖进行添加,删除,通知等操作。

有了依赖管理器后,我们就可以在getter中收集依赖,在setter中通知依赖更新了,代码如下:

function defineReactive (obj,key,val) {
  if (arguments.length === 2) {
    val = obj[key]
  }
  if(typeof val === 'object'){
    new Observer(val)
  }
  const dep = new Dep()  //实例化一个依赖管理器,生成一个依赖管理数组dep
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    get(){
      dep.depend()    // 在getter中收集依赖
      return val;
    },
    set(newVal){
      if(val === newVal){
          return
      }
      val = newVal;
      dep.notify()   // 在setter中通知依赖更新
    }
  })
}

在上述代码中,我们在getter中调用了dep.depend()方法收集依赖,在setter中调用dep.notify()方法通知所有依赖更新。

4. 依赖到底是谁

通过上一章节,我们明白了什么是依赖?何时收集依赖?以及收集的依赖存放到何处?那么我们收集的依赖到底是谁?

虽然我们一直在说”谁用到了这个数据谁就是依赖“,但是这仅仅是在口语层面上,那么反应在代码上该如何来描述这个”谁“呢?

其实在Vue中还实现了一个叫做Watcher的类,而Watcher类的实例就是我们上面所说的那个"谁"。换句话说就是:谁用到了数据,谁就是依赖,我们就为谁创建一个Watcher实例。在之后数据变化时,我们不直接去通知依赖更新,而是通知依赖对应的Watch实例,由Watcher实例去通知真正的视图。

Watcher类的具体实现如下:

export default class Watcher {
  constructor (vm,expOrFn,cb) {
    this.vm = vm;
    this.cb = cb;
    this.getter = parsePath(expOrFn)
    this.value = this.get()
  }
  get () {
    window.target = this;
    const vm = this.vm
    let value = this.getter.call(vm, vm)
    window.target = undefined;
    return value
  }
  update () {
    const oldValue = this.value
    this.value = this.get()
    this.cb.call(this.vm, this.value, oldValue)
  }
}

/**
 * Parse simple path.
 * 把一个形如'data.a.b.c'的字符串路径所表示的值,从真实的data对象中取出来
 * 例如:
 * data = {a:{b:{c:2}}}
 * parsePath('a.b.c')(data)  // 2
 */
const bailRE = /[^\w.$]/
export function parsePath (path) {
  if (bailRE.test(path)) {
    return
  }
  const segments = path.split('.')
  return function (obj) {
    for (let i = 0; i < segments.length; i++) {
      if (!obj) return
      obj = obj[segments[i]]
    }
    return obj
  }
}

谁用到了数据,谁就是依赖,我们就为谁创建一个Watcher实例,在创建Watcher实例的过程中会自动的把自己添加到这个数据对应的依赖管理器中,以后这个Watcher实例就代表这个依赖,当数据变化时,我们就通知Watcher实例,由Watcher实例再去通知真正的依赖。

那么,在创建Watcher实例的过程中它是如何的把自己添加到这个数据对应的依赖管理器中呢?

下面我们分析Watcher类的代码实现逻辑:

  1. 当实例化Watcher类时,会先执行其构造函数;
  2. 在构造函数中调用了this.get()实例方法;
  3. get()方法中,首先通过window.target = this把实例自身赋给了全局的一个唯一对象window.target上,然后通过let value = this.getter.call(vm, vm)获取一下被依赖的数据,获取被依赖数据的目的是触发该数据上面的getter,上文我们说过,在getter里会调用dep.depend()收集依赖,而在dep.depend()中取到挂载window.target上的值并将其存入依赖数组中,在get()方法最后将window.target释放掉。
  4. 而当数据变化时,会触发数据的setter,在setter中调用了dep.notify()方法,在dep.notify()方法中,遍历所有依赖(即watcher实例),执行依赖的update()方法,也就是Watcher类中的update()实例方法,在update()方法中调用数据变化的更新回调函数,从而更新视图。

简单总结一下就是:Watcher先把自己设置到全局唯一的指定位置(window.target),然后读取数据。因为读取了数据,所以会触发这个数据的getter。接着,在getter中就会从全局唯一的那个位置读取当前正在读取数据的Watcher,并把这个watcher收集到Dep中去。收集好之后,当数据发生变化时,会向Dep中的每个Watcher发送通知。通过这样的方式,Watcher可以主动去订阅任意一个数据的变化。为了便于理解,我们画出了其关系流程图,如下图:

在这里插入图片描述

以上,就彻底完成了对Object数据的侦测,依赖收集,依赖的更新等所有操作。

5. 不足之处

虽然我们通过Object.defineProperty方法实现了对object数据的可观测,但是这个方法仅仅只能观测到object数据的取值及设置值,当我们向object数据里添加一对新的key/value或删除一对已有的key/value时,它是无法观测到的,导致当我们对object数据添加或删除值时,无法通知依赖,无法驱动视图进行响应式更新。

当然,Vue也注意到了这一点,为了解决这一问题,Vue增加了两个全局API:Vue.setVue.delete,这两个API的实现原理将会在后面学习全局API的时候说到。

6. 总结

首先,我们通过Object.defineProperty方法实现了对object数据的可观测,并且封装了Observer类,让我们能够方便的把object数据中的所有属性(包括子属性)都转换成getter/seter的形式来侦测变化。

接着,我们学习了什么是依赖收集?并且知道了在getter中收集依赖,在setter中通知依赖更新,以及封装了依赖管理器Dep,用于存储收集到的依赖。

最后,我们为每一个依赖都创建了一个Watcher实例,当数据发生变化时,通知Watcher实例,由Watcher实例去做真实的更新操作。

其整个流程大致如下:

  1. Data通过observer转换成了getter/setter的形式来追踪变化。
  2. 当外界通过Watcher读取数据时,会触发getter从而将Watcher添加到依赖中。
  3. 当数据发生了变化时,会触发setter,从而向Dep中的依赖(即Watcher)发送通知。
    了什么是依赖收集?并且知道了在getter中收集依赖,在setter中通知依赖更新,以及封装了依赖管理器Dep,用于存储收集到的依赖。

最后,我们为每一个依赖都创建了一个Watcher实例,当数据发生变化时,通知Watcher实例,由Watcher实例去做真实的更新操作。

其整个流程大致如下:

  1. Data通过observer转换成了getter/setter的形式来追踪变化。
  2. 当外界通过Watcher读取数据时,会触发getter从而将Watcher添加到依赖中。
  3. 当数据发生了变化时,会触发setter,从而向Dep中的依赖(即Watcher)发送通知。
  4. Watcher接收到通知后,会向外界发送通知,变化通知到外界后可能会触发视图更新,也有可能触发用户的某个回调函数等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/479651.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

记录docker swarm的使用

在前面的几篇文章中我们依次学习了dockerfile、docker-compose的使用&#xff0c;接下来是docker有一个比较 重要的使用&#xff0c;docker swarm的使用&#xff0c;与dockerfile和docker-compose相比较而言&#xff0c;docker swarm是在 多个服务器或主机上创建容器集群服务准…

Leetcode——66. 加一

&#x1f4af;&#x1f4af;欢迎来到的热爱编程的小K的Leetcode的刷题专栏 文章目录 1、题目2、暴力模拟(自己的第一想法)3、官方题解 1、题目 给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。最高位数字存放在数组的首位&#xff0c; 数组…

CTF-PHP反序列化漏洞2-典型题目

作者&#xff1a;Eason_LYC 悲观者预言失败&#xff0c;十言九中。 乐观者创造奇迹&#xff0c;一次即可。 一个人的价值&#xff0c;在于他所拥有的。可以不学无术&#xff0c;但不能一无所有&#xff01; 技术领域&#xff1a;WEB安全、网络攻防 关注WEB安全、网络攻防。我的…

【纯属娱乐】随机森林预测双色球

目录 一、数据标准化二、预测代码三、后续 一、数据标准化 首先&#xff0c;我们需要对原始数据进行处理&#xff0c;将其转换为可用于机器学习的格式。我们可以将开奖号码中的红球和蓝球分开&#xff0c;将其转换为独热编码&#xff0c;然后将其与期数一起作为特征输入到机器…

ETL工具 - Kettle 查询、连接、统计、脚本算子介绍

一、 Kettle 上篇文章对 Kettle 流程、应用算子进行了介绍&#xff0c;本篇对查询、连接、统计、脚本算子进行讲解&#xff0c;下面是上篇文章的地址&#xff1a; ETL工具 - Kettle 流程、应用算子介绍 二、查询算子 数据输入使用 MySQL 表输入&#xff0c;表结构如下&#x…

给httprunnermanager接口自动化测试平台换点颜色瞧瞧

文章目录 一、背景1.1、修改注册表单的提示颜色1.2、修改后台代码&#xff1a;注册错误提示&#xff0c;最后提交注册&#xff0c;密码校验&#xff1b;1.3、修改了注册&#xff0c;那登录呢&#xff0c;也不能放过二、总结 一、背景 虽然咱给HttpRunnerManger引入进来&#xf…

【云台】开源版本SimpleBGC的电机驱动与控制方式

前言 最近想学习一下云台&#xff0c;发现资料确实还不太好找&#xff0c;比较有参考价值的是俄版的开源版本的云台代码&#xff0c;后面就不开源了&#xff0c;开源版本的是比较原始的算法&#xff0c;差不多是玩具级别的&#xff0c;不过还是决定学习一下&#xff0c;了解一…

PyCaret:低代码自动化的机器学习工具

PyCaret简介 随着ChatGPT和AI画图的大火&#xff0c;机器学习作为实现人工智能的底层技术被大众越来越多的认知&#xff0c;基于机器学习的产品也越来越多。传统的机器学习实现方法需要较强的编程能力和数据科学基础&#xff0c;这使得想零基础尝试机器学习变得非常困难。 机器…

Ucore lab5

实验目的 了解第一个用户进程创建过程了解系统调用框架的实现机制了解ucore如何实现系统调用sys_fork/sys_exec/sys_exit/sys_wait来进行进程管理 实验内容 练习0:已有实验代码改进 ​本实验中完成了用户进程的创建&#xff0c;能够对用户进程进行基本管理&#xff0c;并为…

C语言入门篇——自定义数据篇

目录 1、结构体 1.2、匿名结构体 1.3、结构体的自引用 1.4、结构体的声明和初始化 1.5、结构体的内存对齐 1.6、修改默认对齐数 1.7、结构体传参 2、枚举 3、共用体&#xff08;联合体&#xff09; 1、结构体 设计程序时&#xff0c;最重要的步骤之一是选择表示数据的…

【微机原理】8088/8086微处理器

目录 一、8088/8086的功能结构 1.总线接口部件&#xff08;BIU&#xff09; 2.执行部件&#xff08;EU&#xff09; 二、8088/8086的寄存器结构&#xff08;14个&#xff09; 溢出标志的概念 溢出和进位的区别 8086CPU是Intel系列的16位微处理器&#xff0c;他有16根数据…

框架学习之KOCA框架简介

KOCA框架简介 什么是KOCA术语定义发展历史 KOCA的总体架构产品优势开放性敏捷性&#xff08;一体化解决方案&#xff09;融合性安全性接入网关- KOCA Gateway KOCA DevOps流水线 KOCA技术栈 金证开发者社区&#xff1a;http://koca.szkingdom.com/ 什么是KOCA KOCA是金证基于…

LC-1376. 通知所有员工所需的时间(DFS:自上而下、自下而上)

1376. 通知所有员工所需的时间 难度中等125 公司里有 n 名员工&#xff0c;每个员工的 ID 都是独一无二的&#xff0c;编号从 0 到 n - 1。公司的总负责人通过 headID 进行标识。 在 manager 数组中&#xff0c;每个员工都有一个直属负责人&#xff0c;其中 manager[i] 是第…

JavaScript常用数组方法-汇总

快速检索 方法解析 1&#xff1a;concat(); 功能&#xff1a;合并数组&#xff0c;可以合并一个或多个数组&#xff0c;会返回合并数组之后的数据&#xff0c;不会改变原来的数组&#xff1b; var str1 [12,2,"hello"];var str2 ["world"]; console.lo…

简单毛概刷题网页制作 2.0(拖欠近一年版)

原因是大概一年之前学校的毛概期末刷题网站突然崩了&#xff0c;但是一直没有修复。当时眼看着复习时间逐渐被压缩&#xff0c;自己啥也做不了&#xff0c;遂自学前端完成毛概刷题网页一枚。 最早的毛概刷题网站仅仅是 1.0 版本&#xff08;传送门&#xff09;&#xff0c;功能…

Excel技能之对齐,你可能都没想到

Excel表格&#xff0c;既然要做得漂漂亮亮&#xff0c;一定离不开对齐。拍照需要美颜&#xff0c;表格需要对齐。 内容全部挤到一边去。 有些靠左&#xff0c;有些靠右。 加上空格&#xff0c;感觉对齐。如果数据特别多&#xff0c;又逃不过加班的命运。 实在是混乱不堪。审美…

Linux常用命令——iostat命令

在线Linux命令查询工具 iostat 监视系统输入输出设备和CPU的使用情况 补充说明 iostat命令被用于监视系统输入输出设备和CPU的使用情况。它的特点是汇报磁盘活动统计情况&#xff0c;同时也会汇报出CPU使用情况。同vmstat一样&#xff0c;iostat也有一个弱点&#xff0c;就…

Linux安装MongoDB数据库,并内网穿透远程连接

文章目录 前言1. 配置Mongodb源2. 安装MongoDB3. 局域网连接测试4. 安装cpolar内网穿透5. 配置公网访问地址6. 公网远程连接7. 固定连接公网地址8. 使用固定地址连接 转载自Cpolar Lisa文章&#xff1a;Linux服务器安装部署MongoDB数据库 - 无公网IP远程连接「内网穿透」 前言 …

Qt中QDebug的使用

QDebug类为调试信息(debugging information)提供输出流。它的声明在<QDebug>中&#xff0c;实现在Core模块中。将调试或跟踪信息(debugging or tracing information)写出到device, file, string or console时都会使用QDebug。 此类的成员函数参考&#xff1a;https://doc…

C语言—指针的进阶

指针的进阶 字符指针指针数组数组指针数组指针的定义区分&数组名以及数组名数组指针的使用 数组参数、指针参数一维数组传参二维数组传参一级指针传参二级指针传参 函数指针函数指针数组指向函数指针数组的指针回调函数指针和数组相关笔试题和面试题指针笔试题 指针的相关概…