目录
1、结构体
1.2、匿名结构体
1.3、结构体的自引用
1.4、结构体的声明和初始化
1.5、结构体的内存对齐
1.6、修改默认对齐数
1.7、结构体传参
2、枚举
3、共用体(联合体)
1、结构体
设计程序时,最重要的步骤之一是选择表示数据的方法。在许多情况下,简单变量甚至是数组还不够。为此,C提供了结构变量提高你表示数据的能力,它能让你创造新的形式。
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同的变量,其中的成员可以是标量、数组、指针、基本数据类型甚至是其他结构体例如学生这个结构体。学生有姓名,性别,成绩,班别等。
struct student
{
char name[20];
char sex;
int class_num;
float scorse;
}
1.2、匿名结构体
在声明结构的时候,可以不完全的声明。例如:
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}*p;
上面两个匿名结构体在声明的时候省略了结构体标签。当我们声明用一个结构体指针指向一个类型一样的匿名结构体变量时,会发生问题吗?貌似是没问题的吧,但是编译器会把上面两个声明当成完全不同的两个类型,所以是非法的。
1.3、结构体的自引用
上面我们提到结构体的成员变量里面可以有结构体,如果我定义的结构体中包含一个类型为该结构体本身的成员貌似也是可以的吧,初学者容易写出下面的代码:
struct Node
{
int data;
struct Node next;
};
但是我们通过运行我们的程序会得出程序报错的结果:
正确的自引用的代码应该是:
struct Node
{
int data;
struct Node* next;
};
但是我们有的时候会使用typedef这个关键字给自定义数据起一个别名,如果在自引用中使用别名将会导致编译器无法识别结构体中的成员变量,程序将无法成功编译。
1.4、结构体的声明和初始化
在声明我们自定义的结构体类型后,我们就可以通过像基本数据类型一样定义和初始化结构体变量:
结构体类型 结构体变量名;
结构体类型 结构体变量名 = { 初始化值 };
1.5、结构体的内存对齐
在考试题和面试题中,我们常常考到结构体大小的计算问题,这里包含着一个特别热门的考点:结构体内存对齐。这里介绍几条结构体的对齐规则:
- 第一个成员在与结构体变量偏移量为0的地址处。
- 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8
- 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
- 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
下面通过几个代码案例来掌握这几条规则:
//练习1
struct S1
{
char c1;
int i;
char c2;
};
//练习2
struct S2
{
char c1;
char c2;
int i;
};
//练习3
struct S3
{
double d;
char c;
int i;
};
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
和自己心目中的答案是一样的吗?下面通过图解来讲解一下下面几个案例:
为什么存在内存对齐呢?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。
2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
总结:结构体的内存对齐是拿空间来换取时间的做法。
在设计结构体的时候,既要满足对齐,又要节省空间,就要让占用空间小的成员变量尽量集中在一起。这样就对空间和时间都有了保障。
1.6、修改默认对齐数
在vs2022中,我们可以通过#pragma这个预处理指令,可以改变我们的默认对齐数。
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
发现当我们修改默认对齐数时,两个成员变量类型相同的结构体的大小不一样。当结构体在对齐方式不合适的时候,我们就可以通过#pragma这个预处理指令自己更改默认对齐数。
1.7、结构体传参
当我们使用函数传参的时候,可以传结构体变量或者结构体指针。这两种方法都是可以的,但我们一般优先选结构体指针。
原因很简单,参数是需要压栈的,会有时间和空间上的系统开销。如果传递一个结构体对象的是时候,结构体过大,参数压栈的系统开销比较大,所以会导致性能的下降。所以在变量和指针的选择上优先使用结构体指针。
2、枚举
可以用枚举类型声明符号名称来表示整型常量。使 用enum关键字,可以创建一个新“类型”并指定它可具有的值(实际上,enum 常量是int类型,因此,只要能使用int类型的地方就可以使用枚举类型)。枚举类型的目的是提高程序的可读性。它的语法与结构的语法相同。
枚举格式:
enum enumerate {枚举符1,枚举符2,...,枚举符N};
enum enumerate {枚举符1=值1,枚举符2=值2,...,枚举符N};
虽然枚举符是int类型,但是枚举变量可以是任意整数类 型,前提是该整数类型可以储存枚举常量。C语言是允许枚举变量使用++运算符。
默认情况下,枚举列表中的常量都被赋予0、1、2等。在枚举声明中,可以为枚举常量指定整数值:
enum spectrum {red, orange=100, yellow};
如果只给一个枚举常量赋值,没有对后面的枚举常量赋值,那么后面的常量会被赋予后续的值。
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量
枚举常用于switch语句中,充当case标签后面的表达式。
3、共用体(联合体)
共用体(联合)也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间。联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。,例如:
//联合类型的声明
union Un
{
char c;
int i;
};
//联合变量的定义
union Un un;
有一道有趣的面试题:判断当前计算机的大小端存储
什么是大端 / 小端?
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中为什么会有大小端之分呢?
因为在计算机系统中,我们以字节为存储单元,每个地址单元都对应着一个字节,一个字节为8bit。而在C语言中,不仅仅是一个字节来存储一个数据,除了一个字节的char,还有两个字节的short,四个字节的int等等(看具体编译器)。另外,对于位数大于8位的处理器,例如32位的处理器,由于寄存器的宽度大于一个字节,那么就有如何将多个字节进行排布的问题,于是就出现了大小端的问题。
这里介绍利用联合体求大小端的思路:一个成员是多字节,一个是单字节,给多字节的成员赋一个最低一个字节不为0,其他字节为0 的值,再用第二个成员来判断,如果第二个字节不为0,就是小端,若为0,就是大端。
//联合类型的声明
union Un
{
int i;
char c;
};
//联合变量的定义
union Un un;
int main(void)
{
//printf("%d\n", sizeof(un));
union Un u;
u.i = 1;
if (u.c == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
联合体大小计算规则:
- 联合的大小至少是最大成员的大小。
- 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。