😛作者:日出等日落
📘 专栏:数据结构
如果我每天都找出所犯错误和坏习惯,那么我身上最糟糕的缺点就会慢慢减少。这种自省后的睡眠将是多么惬意啊。
目录
🎄堆的概念及结构:
🎄堆的实现:
✔基本接口函数:
✔结构体:
✔HeapInit函数:
✔HeapDestory函数:
✔HeapPrint函数:
✔HeapPush函数:
✔HeapPop函数:
✔HeapTop函数:
🎄完整代码:
✔Heap.h:
✔Heap.c:
✔Text.c:
🎄堆的概念及结构:
如果有一个关键码的集合K = { k0,k1 ,k2 ,…,k(n-1) },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K(2*i+1)且 Ki <= K(2*i+2) (Ki >= K(2*i+1)且Ki >= K(2*i+2)) i = 0,1, 2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值
- 堆总是一棵完全二叉树
- 简单来说:
- 父节点都比其的子节点大的完全二叉树叫做大堆。
- 父节点都比其的子节点小的完全二叉树叫做小堆。
如图:
🎄堆的实现:
✔基本接口函数:
//堆的初始化
void HeapInit(HP* hph);
//堆的销毁
void HeapDestory(HP* hph);
//堆的打印
void HeapPrint(HP* hph);
// 堆的插入
void HeapPush(HP * hph, HPDataType x);
// 堆的删除
void HeapPop(HP* hph);
// 取堆顶的数据
HPDataType HeapTop(HP* hph);
// 堆的数据个数
int HeapSize(HP* hph);
// 堆的判空
int HeapEmpty(HP* hph);
✔结构体:
typedef int HPDataType;
typedef struct heap
{
HPDataType* a;
int capacity;
int size;
}HP;
✔HeapInit函数:
//堆的初始化
void HeapInit(HP* hph)
{
assert(hph);
hph->a = NULL;
hph->capacity = hph->size = 0;
}
✔HeapDestory函数:
//堆的销毁
void HeapDestory(HP* hph)
{
assert(hph);
free(hph->a);
hph->a = NULL;
hph->capacity = 0;
hph->size = 0;
}
✔HeapPrint函数:
//堆的打印
void HeapPrint(HP* hph)
{
for (int i = 0; i < hph->size; ++i)
{
printf("%d ", hph->a[i]);
}
printf("\n");
}
✔HeapPush函数:
当capacity==size时扩容(包括初始化的方案),当size==0时,扩容4个空间,否则扩容二倍的空间,capacity也跟着扩大,当push后size++。
Swap交换函数:
void Swap(HPDataType* p1, HPDataType* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
//向上调整
//child和parent都是下标
void AdjusUp(HPDataType* a, int child)
{
int parent = (child - 1) / 2;
while (child>0)
{
if (a[parent] < a[child])
{
Swap(&a[parent], &a[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
// 堆的插入
void HeapPush(HP* hph, HPDataType x)
{
assert(hph);
//扩容
if (hph->capacity == hph->size)
{
int newcapacity = hph->capacity == 0 ? 4 : hph->capacity * 2;
HPDataType* tmp = (HPDataType* )realloc(hph->a, sizeof(HPDataType) * newcapacity);
if (tmp == NULL)
{
perror("realloc fail:");
exit(-1);
}
hph->a = tmp;
hph->capacity = newcapacity;
}
hph->a[hph->size] = x;
hph->size++;
//向上调整
AdjusUp(hph->a, hph->size - 1);
}
✔HeapPop函数:
出堆顶的元素,让第一个位置的值和最后一个位置的值交换,再size--就相当于删除了,但交换上去的值在根节点的位置上,我们无法维持是大堆的情况,因此还需要向下调整Ajustdown。
//向下调整
void AdjustDown(HPDataType* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1< n && a[child] < a[child + 1])
{
child = child + 1;
}
//child 大于 parent 就交换
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
// 堆的删除
void HeapPop(HP* hph)
{
assert(hph);
assert(!HeapEmpty(hph));
Swap(&hph->a[0], &hph->a[hph->size - 1]);
hph->size--;
AdjustDown(hph->a, hph->size, 0);
}
✔HeapTop函数:
// 取堆顶的数据
HPDataType HeapTop(HP* hph)
{
assert(hph);
assert(hph->size > 0);
return hph->a[0];
}
🎄完整代码:
✔Heap.h:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <stdlib.h>
typedef int HPDataType;
typedef struct heap
{
HPDataType* a;
int capacity;
int size;
}HP;
//堆的初始化
void HeapInit(HP* hph);
//堆的销毁
void HeapDestory(HP* hph);
//堆的打印
void HeapPrint(HP* hph);
// 堆的插入
void HeapPush(HP * hph, HPDataType x);
// 堆的删除
void HeapPop(HP* hph);
// 取堆顶的数据
HPDataType HeapTop(HP* hph);
// 堆的数据个数
int HeapSize(HP* hph);
// 堆的判空
int HeapEmpty(HP* hph);
✔Heap.c:
#define _CRT_SECURE_NO_WARNINGS 1
#include "heap.h"
//堆的打印
void HeapPrint(HP* hph)
{
for (int i = 0; i < hph->size; ++i)
{
printf("%d ", hph->a[i]);
}
printf("\n");
}
//堆的初始化
void HeapInit(HP* hph)
{
assert(hph);
hph->a = NULL;
hph->capacity = hph->size = 0;
}
//堆的销毁
void HeapDestory(HP* hph)
{
assert(hph);
free(hph->a);
hph->a = NULL;
hph->capacity = 0;
hph->size = 0;
}
void Swap(HPDataType* p1, HPDataType* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
//向下调整
//child和parent都是下标
void AdjusUp(HPDataType* a, int child)
{
int parent = (child - 1) / 2;
while (child>0)
{
if (a[parent] < a[child])
{
Swap(&a[parent], &a[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
// 堆的插入
void HeapPush(HP* hph, HPDataType x)
{
assert(hph);
//扩容
if (hph->capacity == hph->size)
{
int newcapacity = hph->capacity == 0 ? 4 : hph->capacity * 2;
HPDataType* tmp = (HPDataType* )realloc(hph->a, sizeof(HPDataType) * newcapacity);
if (tmp == NULL)
{
perror("realloc fail:");
exit(-1);
}
hph->a = tmp;
hph->capacity = newcapacity;
}
hph->a[hph->size] = x;
hph->size++;
//向下调整
AdjusUp(hph->a, hph->size - 1);
}
//向上调整
void AdjustDown(HPDataType* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1< n && a[child] < a[child + 1])
{
child = child + 1;
}
//child 大于 parent 就交换
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
// 堆的删除
void HeapPop(HP* hph)
{
assert(hph);
assert(!HeapEmpty(hph));
Swap(&hph->a[0], &hph->a[hph->size - 1]);
hph->size--;
AdjustDown(hph->a, hph->size, 0);
}
// 取堆顶的数据
HPDataType HeapTop(HP* hph)
{
assert(hph);
assert(hph->size > 0);
return hph->a[0];
}
// 堆的数据个数
int HeapSize(HP* hph)
{
assert(hph);
return hph->size;
}
// 堆的判空
int HeapEmpty(HP* hph)
{
assert(hph);
return hph->size == 0;
}
✔Text.c:
#define _CRT_SECURE_NO_WARNINGS 1
#include "heap.h"
void Heap()
{
int arry[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };
HP hph;
HeapInit(&hph);
HeapPrint(&hph);
for (int i = 0; i < sizeof(arry) / sizeof(int); i++)
{
HeapPush(&hph, arry[i]);
}
HeapPrint(&hph);
HeapPush(&hph, 100);
HeapPrint(&hph);
HeapPop(&hph);
HeapPrint(&hph);
HeapDestory(&hph);
}
void TestHeap2()
{
int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };
HP hp;
HeapInit(&hp);
for (int i = 0; i < sizeof(array) / sizeof(int); ++i)
{
HeapPush(&hp, array[i]);
}
while (!HeapEmpty(&hp))
{
printf("%d ", HeapTop(&hp));
HeapPop(&hp);
}
HeapDestroy(&hp);
}
int main()
{
TestHeap2();
return 0;
}