注意力机制:基于Yolov8的Triplet注意力模块,即插即用,效果优于cbam、se,涨点明显

news2024/11/16 12:33:52

 

 论文:https://arxiv.org/pdf/2010.03045.pdf

本文提出了可以有效解决跨维度交互的triplet attention。相较于以往的注意力方法,主要有两个优点:

1.可以忽略的计算开销

2.强调了多维交互而不降低维度的重要性,因此消除了通道和权重之间的间接对应

        传统的计算通道注意力的方法为了计算这些通道的权值,输入张量在空间上通过全局平均池化分解为一个像素。这导致了空间信息的大量丢失,因此在单像素通道上计算注意力时,通道维数和空间维数之间的相互依赖性也不存在。后面提出基于Spatial和Channel的CBAM模型缓解了空间相互依赖的问题,但是通道注意和空间注意是分离的,计算是相互独立的。基于建立空间注意力的方法,本文提出了跨维度交互作用(cross dimension interaction)的概念,通过捕捉空间维度和输入张量通道维度之间的交互作用,解决了这一问题。

 

 

        所提出的Triplet Attention如下图所示,Triplet Attention由3个平行的Branch组成,其中两个负责捕获通道C和空间H或W之间的跨维交互。最后一个Branch类似于CBAM,用于构建Spatial Attention,最终3个Branch的输出使用平均求和。

 效果优于CBAM、SE

 

 2.Triplet加入Yolov8

2.1Triple加入modules.py

###################### TripletAttention  ####     start   by  AI&CV  ###############################

class BasicConv(nn.Module):   #https://arxiv.org/pdf/2010.03045.pdf
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
                 bn=True, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class ZPool(nn.Module):
    def forward(self, x):
        return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)


class AttentionGate(nn.Module):
    def __init__(self):
        super(AttentionGate, self).__init__()
        kernel_size = 7
        self.compress = ZPool()
        self.conv = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.conv(x_compress)
        scale = torch.sigmoid_(x_out)
        return x * scale


class TripletAttention(nn.Module):
    def __init__(self, no_spatial=False):
        super(TripletAttention, self).__init__()
        self.cw = AttentionGate()
        self.hc = AttentionGate()
        self.no_spatial = no_spatial
        if not no_spatial:
            self.hw = AttentionGate()

    def forward(self, x):
        x_perm1 = x.permute(0, 2, 1, 3).contiguous()
        x_out1 = self.cw(x_perm1)
        x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
        x_perm2 = x.permute(0, 3, 2, 1).contiguous()
        x_out2 = self.hc(x_perm2)
        x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
        if not self.no_spatial:
            x_out = self.hw(x)
            x_out = 1 / 3 * (x_out + x_out11 + x_out21)
        else:
            x_out = 1 / 2 * (x_out11 + x_out21)
        return x_out

###################### TripletAttention  ####     END   by  AI&CV  ###############################

2.2Triple加入tasks.py

def parse_model(d, ch, verbose=True):  加入以下代码

        elif m is TripletAttention:
            c1, c2 = ch[f], args[0]
            if c2 != nc:
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, *args[1:]]

2.3 修改yolov8s_TripletAttention.yaml

# Ultralytics YOLO 🚀, GPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 4  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [-1, 1, TripletAttention, [1024]] 

  - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/465088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32F4_SRAM中调试代码

目录 1. 在RAM中调试代码 2. STM32的三种存储方式 3. STM32的启动方式 4. 实验过程 通过上一节的学习,我们已经了解了SRAM静态存储器; 1. 在RAM中调试代码 一般情况下,我们在MDK中编写工程应用后,调试时都是把程序下载到芯片…

Android类似微信聊天页面教程(Kotlin)四——数据本地化

前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …

Flink从入门到精通之-07处理函数

Flink从入门到精通之-07处理函数 之前所介绍的流处理 API,无论是基本的转换、聚合,还是更为复杂的窗口操作,其实都是基于 DataStream 进行转换的;所以可以统称为 DataStream API,这也是 Flink 编程的核心。而我们知道…

同样是测试,你年薪50W,我年薪10W,我哭了...

软件测试可以拿到年薪50万? 开什么玩笑? 我才月薪15K。 小伙伴看到标题是不是一开始的反应是这样的?是的话举一个小爪爪吧! 那软件测试到底能不能拿到年薪50万呢? 没有吃过猪肉还没见过猪跑吗,你自己没…

【云原生-深入理解Kubernetes-1】容器的本质是进程

文章目录 👹 关于作者一、为什么会出现容器?二、容器是什么?三、容器“边界”的实现手段3.1、进程如何运行的?3.2、Namespace 与 Docker 边界容器的本质是一个进程这是怎么做到的呢? 总结✊ 最后参考 👹 关…

践行公益担当|人情如故,爱心依旧

爱心助学 情暖童心 随着改革开放,少数民族地区发生了翻天覆地的变化,城乡经济持续发展,人民生活水平日益提高。但对于很多居住在偏远山区的民族自然村,由于山区的地形限制,自然生存环境恶劣,交通及文化、教…

Android 项目必备(四十五)-->2023 年如何构建 Android 应用程序

Android 是什么 Android 是一种基于 Linux 内核并由 Google 开发的开源操作系统。它用于各种设备包括智能手机、平板电脑、电视和智能手表。 目前,Android 是世界上移动设备使用最多的操作系统; 根据 statcounter 的一份最近 12 个月的样本报告;Android 的市场份额…

C++ 编程笔记(本人出品,必属精品)

文章目录 Part.I IntroductionChap.I 快应用 Part.II C 基础Chap.I 一些待整理的知识点Chap.I 常用的库或类 Part.III 杂记Part.X Others WorkChap.I 大佬的总结Chap.II 大佬的轮子 Part.I Introduction 前言:C 用的人还是比较多的,主要是它比较快并且面…

2023-4-26-C++11新特性之正则表达式

🍿*★,*:.☆( ̄▽ ̄)/$:*.★* 🍿 💥💥💥欢迎来到🤞汤姆🤞的csdn博文💥💥💥 💟💟喜欢的朋友可以关注一下&#xf…

太为难我了,阿里面试了7轮...

前言 今年的大环境非常差,互联网企业裁员的现象比往年更严重了,可今年刚好是我的第一个“五年计划”截止的时间点,说什么也不能够耽搁了,所以早早准备的跳槽也在疫情好转之后开始进行了。但是,不得不说,这…

SOLIDWORKS认证考试流程

一、SOLIDWORKS认证考试前的准备工作 1、检查电脑硬件设备是否可以正常使用,如键盘鼠标等。 2、检查Solidworks软件是否可以正常使用。 3、关闭电脑所有杀毒软件。 4、检查电脑网络(外网)是否正常。 5.请联系我们获取考试系统软件安装包。…

redis面试题(二)附答案

书接上回,接着分享面试题,最近开发了几个小伙伴的项目,耽误更新了,来点干货,表示歉意。大家有需求也可以找小编。 2、缓存穿击 业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访…

好程序员:前端JavaScript全解析——Canvas绘制形状(上)

●今天,我们来通过 canvas 提供的方法开绘制一些简单的形状绘制矩形 绘制基础矩形。下面一起看看好程序员老师的讲解吧~ ●语法 : 工具箱.rect( 矩形起点 x 轴坐标, 矩形起点 y 轴坐标, 矩形宽度, 矩形高度 ) // 0. 获取到页面上的 canvas 标签元素节点 const canva…

Camtasia2023简体中文标准版免费更新下载

Camtasia专业的 屏幕录制和视频剪辑软件3000多万专业人士在全球范围内使用Camtasia展示产品,教授课程,培训他人,以更快的速度和更吸引人的方式进行沟通和屏幕分享。使您在Windows和Mac上进行录屏和剪辑创作专业外观的视频变得更为简单。 Camt…

Vue3 element-plus el-select 无法选中,又不报错

html 结构 <el-form :model"conditionForm"ref"conditionForm"label-width"100px" class"demo-ruleForm"><el-selectv-model"conditionForm.personnel"multipleplaceholder"Select"style"width: 2…

知网导入EndNote

首先进入知网&#xff0c;搜索你想要找的期刊论文。 选择EndNote 点击导出 浏览器自动下载以txt为后缀的文件 导入到EndNote中

【C++】异常,你了解了吗?

在之前的C语言处理错误时&#xff0c;会通过assert和错误码的方式来解决&#xff0c;这导致了发生错误就会直接把程序关闭&#xff0c;或者当调用链较长时&#xff0c;就会一层一层的去确定错误码&#xff0c;降低效率&#xff0c;所以c针对处理错误&#xff0c;出现了异常&…

ChatGPT写小论文

ChatGPT写小论文 只是个人对写小论文心得?从知乎,知网自己总结的,有问题,可以留个言我改一下 文章目录 ChatGPT写小论文-1.写论文模仿实战(狗头)0.论文组成1.好论文前提:2.标题3.摘要4.关键词5.概述6.实验数据、公式或者设计7.结论&#xff0c;思考8.参考文献 0.模仿1.喂大纲…

【云原生】Dockerfile制作WordPress镜像,实现Compose + K8s编排部署

文章目录 &#x1f479; 关于作者前言环境准备目录结构 dockerfile制作镜像yum 脚本Dockerfile-mariadb 镜像Dockerfile-service 镜像docker compose 编排 K8s部署svcdeploy ✊ 最后 &#x1f479; 关于作者 大家好&#xff0c;我是秋意零。 &#x1f608; CSDN作者主页 &…

lambda的toMap是不是要注意点,线上事故

异常回顾 先看代码&#xff1a; dbTaxiDrivers.ifPresent((drivers) -> { map.putAll(drivers.stream() .collect(Collectors.toMap(TaxiDriverInfo::getOperationId, item -> item))); }); 相信很多为了减少2层for循环&#xff0c…