FIR半带滤波器

news2024/9/23 19:25:23

FIR半带滤波器

半带滤波器原理:

CIC滤波器是一种适合于工作在高采样率条件下的滤波器。

半带滤波器是一种非常适合于2倍抽取的FIR滤波器。

半带滤波器可以使2倍抽取的每秒乘法次数比一般线性相位的FIR滤波器减少近1/2。

半带滤波器是一种实现数字下变频的高效数字滤波器。

半带滤波器的特点

半带滤波器有以下特点:1、滤波器的通带和阻带对称,即通带容限和阻带容限相等。

2、滤波器的系数具有偶对称特性,且滤波器长度为偶数(滤波器阶数为奇数)。

滤波器所有的大于0的偶数序号的冲击响应值均为0。

半带滤波器的这一特性大大降低了滤波器运算所需的乘法及加法次数。

3、经半带滤波器滤波后,进行2倍抽取时,信号通带内没有频谱混叠,但阻带内有频谱混叠。

半带滤波器的MATLAB设计


% 利用Matlab提供的firhalfband函数设计阶数为16、
% 通阻带容限为0.0001的半带滤波器。
% 仿真测试滤波前后的信号时域图,绘制滤波器的频率响应特性图。
% 
% E6_10_HalfFilterMatlab.m
% 定义参数
f = 1000;  %信号频率为 1kHz
Fs = 40*f; %采样频率为40kHz
n = 16;    %半带滤波器阶数
D = 2;     %抽取因子
dev = 0.0001; %通阻带容限

% % 产生正弦波信号
t = 0:1/Fs:0.02;
c = 2*pi*f*t;
si = sin(c);

% 设计半带滤波器
b = firhalfband(n,dev,'dev')%;
% disp(b);
s = filter(b,1,si); %对信号进行滤波处理
s = s/max(abs(si)); %归一化处理
Ds = s(1:D:length(t)); %对滤波后信号进行抽取

% 绘图
figure(1);
x = 0:1:100;
x = x/Fs;
Dx = x(1:D:length(x));
subplot(211);
stem(x,si(1:length(x))); %绘制离散序列数据
title('Matlab 仿真滤波前信号时域波形');

subplot(212);
stem(Dx,Ds(1:length(Dx)));
title('Matlab 仿真滤波后信号时域波形');

figure(2);
freqz(b);

 

 

从运行结果可以看出,半带滤波器的系数有近一半为0,且呈偶对称特性。

从滤波前后信号的时域图、滤波器的频率响应图可以看出,经半带滤波器滤波后的信号,与原信号相比,波形没有改变,但抽样速率降低了一半;半带滤波器通阻带容限相同,具有严格的线性相位特性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/464726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

暗藏的比特币白皮书已删除 苹果其实与Web3“格格不入”?

据悉,Apple已从其最新的Mac OS Ventura beta中删除了比特币白皮书,虽然该公司从未对白皮书的存在提供任何官方解释,但许多人猜测这是对加密货币日益增长的重要性的认可。 4月上旬,科技专家Andy Baio偶然发现,自己的Mac…

浅述 国产仪器 1652AM任意波形发生器

1652AM任意波形发生器是一款多通道、多功能的任意波形发生器。它在兼顾了输出信号高质量的同时,实现了高通道密度。它可与其它通用或专用模块化测试仪器构成综合测试系统或平台,支持众多解决方案,包括量子计算机调控信号生成、大规模MIMO信号…

活动目录(Active Directory)安全审计

延迟响应变化的影响可能会使原本应该微不足道的颠簸滚雪球变成无法弥补的损害。这在 Windows Active Directory 环境中更为重要,因为这种延迟造成的损害可能会使组织损失数百万美元!在这种情况下,需要一个警惕的警报系统,该系统可…

WPF学习

一、了解WPF的框架结构 (第一小节随便看下就可以,简单练习就行) 1、新建WPF项目 xmlns:XML的命名空间 Margin外边距:左上右下 HorizontalAlignment:水平位置 VerticalAlignment:垂直位置 2…

性能测试开始前的需求调研

之前的博客聊聊性能测试开始前的准备工作,聊了一些关于性能测试开始前要做的准备工作。这篇博客,来谈谈性能测试开始前的需求调研阶段,我们要做什么,关注那些Point。。。 一、基本信息 信息类型说明项目名称项目归属的业务线&am…

低代码应用开发平台,让数据管理更简单!

在数据管理越来越规范化的今天,低代码应用开发平台也获得了进步和发展的机会和空间。想要将企业内部的数据资源做好系统管理,从而为各个时期的经营决策提供强有力的证据和基础,低代码应用开发平台就是其中备受喜爱的工具。本文主要从它的特点…

重磅!阿里云云原生合作伙伴计划全新升级:加码核心权益,与伙伴共赢新未来

在今天的 2023 阿里云合作伙伴大会上,阿里云智能云原生应用平台运营&生态业务负责人王荣刚宣布: “阿里云云原生合作伙伴计划”全新升级。他表示: 云原生致力于帮助企业客户最大限度的减轻运维工作,更好的实现敏捷创新&#x…

MQTT 协议

MQTT 简介 MQTT是一种基于客户端服务端架构的发布/订阅模式的消息传输协议。它的设计思想是轻巧、开放、简单、规范,易于实现。这些特点得它对很多场景来说都是很有的选择,特别是对于受限的环境如机器与机器的通信(M2M)以及物联网…

RAC集群节点2异常时节点1的database实例无法提供服务问题的分析

在客户的数据库RAC集群环境中,节点2发生了异常,最终通过重启解决。在节点2发生异常的10分钟左右时间内,由于RAC集群节点2异常,此时节点1的database实例无法提供服务问题,程序操作报超时; 对此现象&#xf…

【Linux】-关于Linux的指令(中)

作者:小树苗渴望变成参天大树 作者宣言:认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧! 文章目录 前言一、man指令二、cp指令三、mv指令四、cat指令五、more和less指令六、hea…

【力扣-141】 环形链表 + 【力扣-142】 环形链表 II

🖊作者 : Djx_hmbb 📘专栏 : 数据结构 😆今日分享 : 霍桑效应(霍索恩效应) : 是指那些意识到自己正在被别人观察的个人具有改变自己行为的倾向。 霍桑效应告诉我们:从旁人的角度,善意的谎言和夸奖真的可以造就一个人&a…

线程的生命周期以及sleep()方法和wait()方法

三种休眠状态:Blocked,Waiting,Timed_Waiting 注意两个Blocked态是不一样的,上面的Blocked只要睡眠时间到了马上进入运行态,下面处于Blocked的线程还需要抢到锁才能进入运行态 sleep()和wait()方法: sleep…

【翻译一下官方文档】创建uniCloud服务空间并关联新建的uniapp项目

我将用图文的形式,把市面上优质的课程加以自己的理解,详细的把:创建一个uniCloud的应用,其中的每一步记录出来,方便大家写项目中,做到哪一步不会了,可以轻松翻看文章进行查阅。(此文…

论文笔记:An Interactive-Voting Based Map Matching Algorithm

2010 MDM 1 ST-matching的问题 论文笔记:Map-Matching for low-sampling-rate GPS trajectories(ST-matching)_UQI-LIUWJ的博客-CSDN博客 当轨迹很长,且车辆通过多线平行的道路时,ST-Matching的效果较差&#xff0c…

冯·诺依曼体系结构与初始操作系统

目录 冯诺依曼体系结构 冯诺依曼体系结构图 内存 外存 网卡和磁盘 结构之间运算速度的差异 缓冲区 初始操作系统 概念 操作系统上边与下边分别有什么 从上到下依次顺序解析 用户 用户操作接口 系统调用接口 操作系统四项管理 驱动 硬件 冯诺依曼体系结构 冯诺…

世界大学电子电气工程TOP10,国内大学哪家强?

EE究竟是什么专业 ? 在中国,工程系中跟电相关的专业,一般都切分得非常细。有电子工程、电气工程、通信工程、信息工程、自动化、测控仪器等。但在国外,一般把这些领域都归类到 Electrical Engineering 中,也就是我们常说的EE。 …

后向投影算法(续)-SAR成像算法系列(八)

系列文章目录 《后向投影算法(BPA)-SAR成像算法系列(二)》 文章目录 前言 一、成像场景设置 1.1 扫描模式 条带模式 聚束模式 1.2 几何构型 正侧视 斜视 1.3 成像坐标选择 固定场景直角坐标系 沿视线直角坐标系 数据获取面直角坐标…

深度学习GPU选购指南

【导读】最近,曾拿到斯坦福、UCL、CMU、NYU博士offer、目前在华盛顿大学读博的知名测评博主Tim Dettmers在自己的网站又上线了深度学习领域的GPU深度测评,到底谁才是性能和性价比之王? 众所周知,在处理深度学习和神经网络任务时&a…

马云的创业故事及他人生中的摆渡人-创建阿里巴巴(六)

著名的“18罗汉大会” 以及“马云成功背后的男人” 1999年大年初五,杭州湖畔花园小区,18个人坐满了一屋子, 这是阿里巴巴的第一次全员大会,马云激情澎湃地讲了2个小时,并且专门请了摄影师全程录像。 这就是传说中的…

边界点射箭问题

问题 题目 问题: 给定一个有目标位置和边界单元格为空的 n n 方格表,找出哪个位于边界单 元格的箭头会击中最多连续的目标而不经过目标之间的任何空单元格。箭头方向为: (A)←、(B) ↑、 © →、(D) ↓、(E) ↖、 (F) ↗、 (G) ↘ 和 (H) ↙。 将…