Python用广义加性模型GAM进行时间序列分析

news2024/11/24 1:31:49

每当你发现一个与时间对应的趋势时,你就会看到一个时间序列。我们围绕广义加性模型GAM技术进行一些咨询,帮助客户解决独特的业务问题。研究金融市场表现和天气预报的事实上的选择,时间序列是最普遍的分析技术之一,因为它与时间有着不可分割的关系 - 我们总是有兴趣预测未来。 

 视频:R语言广义相加模型(GAM)在电力负荷预测中的应用

拓端tecdat:R语言广义相加模型(GAM)在电力负荷预测中的应用

时间相关模型

一种直观的预测方法是参考最近的时间点。今天的股价可能会比昨天的价格更接近五年前的价格。因此,在预测今天的价格时,我们会比最近的价格更重要。过去和现在值之间的这些相关性表明了时间依赖性,它形成了一种流行的时间序列分析技术ARIMA(自回归整合移动平均线)的基础。ARIMA既考虑季节变化又考虑过去的一次性“冲击”以作出未来预测。

但是,ARIMA做出了严格的假设。要使用ARIMA,趋势应该有规律的时期,以及不变的均值和方差。例如,如果我们想分析一个增长的趋势,我们必须首先对趋势进行变换,让其稳定。而且,如果我们缺少数据,ARIMA将无法工作。

我们可以考虑一种替代方法,如神经网络。长期短期记忆(LSTM)网络是一种基于时间依赖性建立模型的神经网络。虽然高度准确,但神经网络缺乏可解释性 - 很难确定导致特定预测的模型。

模型

除了使用类似时间点的值之间的相关性之外,我们可以退后一步对整体趋势进行建模。时间序列可以被看作是个体趋势的总和。举例来说,谷歌搜索柿子的数据量,一种水果的趋势。

从图1中,我们可以推断柿子可能是季节性的。随着11月份供应量达到峰值,杂货店的顾客可能会被要求谷歌营养知识或柿子食谱。

图1.谷歌搜索'柿子'的季节性趋势 

此外,谷歌搜索柿子的情况在过去几年中也越来越频繁。

图2.来自http://rhythm-of-food.net/persimmon的谷歌搜索“柿子”的总体增长趋势

因此,柿子谷歌搜索趋势可以通过在增长趋势增加的季节性趋势中进行建模,即所谓的广义加性模型(GAM)。

GAM背后的原理与回归相似,不同之处在于代替各个预测因子的求和效应,GAM是平滑函数的总和。函数允许我们对更复杂的模式进行建模,并对它们进行平均,以获得更平滑的平滑曲线。

因为GAM是基于函数而不是变量的,所以它们不受限于回归中的线性假设,即要求预测变量和结果变量以直线移动。此外,与神经网络不同,我们可以分离和研究GAM中各个功能对结果预测的影响。

在本教程中,我们将:

查看如何使用GAM的示例。

了解如何验证时间序列模型。

住在四季地区的人会知道一个事实:冬季的阳光比夏季少。为了弥补这一缺陷,一些国家在夏季的时候将时钟向前移动了一个小时,为夜间户外活动安排了更多的阳光,并有望减少用于家中取暖和照明的能量。夏季推进时钟的做法称为夏令时(DST),并于20世纪初实施。

但是DST的实际好处仍然存在争议。值得注意的是,DST已被证明会扰乱影响工作绩效甚至导致事故的睡眠模式。因此,无论何时何时调整时钟,人们都会被提示质疑DST的基本原理,而维基百科是答案的来源之一。

为了研究DST页面浏览的趋势,我们首先使用Python脚本从维基百科数据库中提取数据。使用了从2008年到2015年的浏览量。接下来,我们使用由Facebook研究人员发布的称为Prophet的GAM包来进行Python中的时间序列分析。该软件包也可在R中找到。

Prophet包是用户友好的,使我们能够指定不同类型的,包括所得到的GAM趋势的功能。有三种主要类型的功能:

总体增长。这可以建模为直线(线性)或稍微弯曲(逻辑)的趋势。在这个分析中,我们使用默认的线性增长模型。

季节性变化。这是使用傅里叶级数模型化的,它只是一种近似周期函数的方法。我们可以指定我们是否预计每周或/和年度趋势存在。

特别活动。除了模拟常规趋势之外,我们还应该考虑一次性事件。这包括任何现象,无论是政策公告还是自然灾害,都会为平滑的趋势增添涟漪。如果我们不考虑不规则事件,GAM可能会将它们误认为是持续事件,其影响将被错误地传播。

Prophet包还要求我们指定先验值,这些值决定了趋势线对数据值变化的敏感程度。较高的灵敏度会导致更多锯齿状的趋势,这可能会影响对未来值的普遍性。当我们验证我们的模型时,可以调整Priors,我们将在本教程后面看到。

现在,我们可以继续适应GAM。图3显示了总体增长,特殊事件和季节性变化的结果函数:

compPlot = m.plot_components(forecast)
compPlot.savefig('images/time-components.png', format='png', bbox_inches='tight', dpi=1000)

图3.包含GAM预测DST维基百科文章页面视图的函数。在整体趋势和特殊事件(即'节假日')的前两张图中,X轴标记为'ds',代表'日期戳'。出现重复的年份标签,因为网格线与每年的相同日期不一致。

我们可以看到,DST维基百科文章的整体页面浏览量多年来一直在下降。最后,年度趋势显示,页面浏览量在三月底和十月底发生高峰期。

我们不需要知道包含在GAM中的确切预测函数是很方便的。相反,我们只需要指定一些约束条件,就会自动为我们导出。GAM如何做到这一点?

反拟合算法

为了找到适合数据的最佳趋势线,GAM使用称为反拟合的程序。反拟合是一个迭代地调整GAM中的函数的过程,以便它们产生使预测误差最小化的趋势线。一个简单的例子可以用来说明这个过程。

假设我们有以下数据:

图4.示例数据集,由两个预测变量和一个结果变量组成。

我们的目标是找到适用于预测因子的适当函数,以便我们可以准确预测结果。

首先,我们致力于为预测变量1找到一个函数。一个好的初始猜测可能是将它乘以2:

图5.将“乘以2”函数应用于预测器1的模型的结果。

从图5可以看出,通过对预测变量1应用“乘以2”的函数,我们可以完美地预测50%的结果。但是,还有改进的空间。

接下来,我们致力于为预测变量2找到函数。通过分析拟合预测变量1函数的预测误差,我们可以看到,只要预测变量2具有正值,只需将结果加1即可达到100%的准确度,并且别的什么都不做(即signmoid函数)。

这是一个反拟合过程的要点,总结了以下步骤:

步骤0:为一个预测器定义一个函数并计算出结果的误差。

步骤1:为最能减少错误的下一个预测器推导一个函数。

步骤2:对所有预测变量重复步骤1,并进一步重复循环以在必要时重新评估其功能,直到预测误差不能进一步最小化。

现在我们已经拟合了我们的模型,我们需要对其进行测试:它能够准确预测未来的值吗?

验证时间序列模型

交叉验证是评估模型预测未来价值有效性的首选技术。但是,时间序列模型是交叉验证不起作用的一个例外。

回想一下,交叉验证涉及将数据集分成随机子样本,用于重复训练和测试模型。关键的是,训练样本中使用的数据点必须独立于测试样本中的数据点。但这在时间序列中是不可能的,因为数据点是时间依赖的,所以训练集中的数据仍然会与测试集数据携带基于时间的关联。这需要不同的技术来验证时间序列模型。

我们可以根据时间段对它们进行切片,而不是随着时间对我们的数据点进行采样。如果我们想在未来一年(即预测时间范围)测试模型的预测准确性,我们可以将数据集划分为一年(或更长)的训练集,并使用每个分部预测其下一年的数值。这种技术被称为模拟历史预测。如果我们的预测范围是一年,那么我们应该每半年进行一次模拟预测。图6显示了11个DST维基百科页面浏览量的模拟预测结果。

plt.plot_date(df.ds, df.y, fmt='.', ms=1, c='k', label='')
i = 0
for s in range(ns):
    plt.fill_between(results.d])
    i = i + H
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
           title='Fo

图6. DST维基百科页面浏览的模拟历史预测。

在图6中,预测范围为一年,每个训练部分包含三年的数据。例如,第一个预测频段(红色)使用2008年1月至2010年12月的数据来预测2011年1月 - 2011年12月的观点。我们可以看到,除了前两个模拟预测外,这些模拟预测被异常高的页面活动所误导在2010年,预测通常与实际值重叠。

为了更好地评估模型的准确性,我们可以从所有11个模拟预测中获取平均预测误差,并将其与预测时间范围进行比较,如图7所示。注意,随着我们试图进一步预测未来,误差会如何增加。

errorMeanSmooth = savgol_filter(errorMean, 365, 3)

plt.xlim([1,H])
plt.plot(range(H), errorMeanSmooth, c='k', lw=2)
plt.plot(range(H),
plt.xlabel('Forecas
plt.savefig('images/time-error.png', format='png', bbox_inches='tight', dpi=1000)
plt.show()

图7.预测范围内的预测误差。红线表示11个模拟预测的平均绝对误差,而黑线表示该误差的平滑趋势。

回想一下,我们需要调整的一个参数是先验值,它决定了我们的趋势对数据值变化的敏感程度。一种方法是尝试不同的参数值,并通过如图8所示的图进行比较。

t.xlabel('Forecast Horizon (days)')
plt.ylabel('Mean Absolute Prediction Error')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
           title='Change Point Prior')
plt.savefig('images/time-errorCompare.png', format='png', bbox_inches='tight', dpi=1000)
plt.show()

图8.比较不同的先前值导致的预测误差。

除了调整先行者之外,我们还可以调整基础增长模型,季节性趋势和特殊事件的设置。对我们的数据进行可视化也有助于我们识别和删除异常值。例如,我们可以通过排除2010年的数据来改进预测,在此期间页面浏览次数非常高。

限制

正如你可能猜测的那样,在时间序列中有更多的训练数据不一定会导致更准确的模型。异常值或快速变化的趋势可能会加剧任何预测工作。更糟糕的是,对时间序列产生永久影响的突然震荡也可能使所有过去的数据无关紧要。

因此,时间序列分析最适合稳定和系统的趋势,我们可以通过可视化来评估趋势。

概要

时间序列分析是一种技术,可以推导出一段时间内的趋势,可用于预测未来的数值。广义相加模型(GAM)通过识别和累加多个函数来实现这一点,从而得到最适合数据的趋势线。

GAM中的函数可以使用反拟合算法来识别,该算法迭代地拟合和调整函数以减少预测误差。

时间序列分析最适合稳定和系统的趋势。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/46405.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

matlab图像的运算有点运算、代数运算、逻辑运算和几何运算

1.图像的点运算 2.图像的代数运算 3.图像的逻辑运算 4.图像的几何运算 一、图像的点运算 图像的点运算:对图像中的每个像素值进行计算,从而改善图像显示效果的操作,常用于改变图像的灰度范围及分布,有时也被称为对比度增强和拉伸…

Arduino开发实例-DIY酒精浓度检测计

DIY酒精浓度检测计 在本文中,将详细介绍如何创建一个简单的酒精检测器。 它可以在各种应用领域中使用。市场上有许多先进的酒精传感器,价格合理,但我们在这里使用一些基本的微控制器来制作这个项目,如 Arduino、LED、蜂鸣器和 MQ3 酒精传感器。 1、MQ-3传感器介绍 MQ-3传…

外卖项目(项目优化2)11---读写分离

读:查询的操作 目录 一、Mysql主从复制 172 1.1Mysql主从复制_配置主库Master&从库Slave 173 配置:主库Master: 配置:从库Slave 二、读写分离案例 175 2.1背景 2.2Sharding-JDBC介绍 2.3读写分离案例---入门案例 17…

Magic Leap 2设计和开发幕后花絮

Magic Leap今年发布新款AR头显Magic Leap 2,相比于上一代Magic Leap 1,新品更专注于B端场景,自公布以来,Magic Leap不仅对公司策略、理念更加透明,也不断公开ML2产品设计背后的思考。相比于ML1,ML2的设计有…

里P7告诉你,接口测试真的很简单,有手就行

一、什么是接口测试? 所谓接口,是指同一个系统中模块与模块间的数据传递接口、前后端交互、跨系统跨平台跨数据库的对接。而接口测试,则是通过接口的不同情况下的输入,去对比输出,看看是否满足接口规范所规定的功能、…

windows bat批处理文件,实现某个软件的重启

bat批处理实现软件重启功能windows环境需要明确的概念按照启动文件xxx.exe去定位某个程序的Pid根据pid杀死某个进程根据exe文件启动某个软件bat示例,杀死软件进程并重启windows环境 我这里用的是win10企业版,在基础功能上和家庭版区别不大 需要明确的概…

19uec++多人游戏【基础AI导航】

首先把这一期的资源导入一下 创建一个球体类,继承于pawn类 为其添加静态组件 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category "Components")class UStaticMeshComponent * MeshComponent; #include "Components/StaticMeshComponent.h&qu…

具备统一门户功能的内网即时通讯软件才是发展趋势

作为企业领导,我们最害怕的就是下属工作效率不高,没办法为企业带来价值,有时候并不一定是员工自身存在问题,“工欲善其事,必先利其器“正好说明了,如果我们有能力在线的员工加上强大的办公软件辅助&#xf…

如何线上登记版权?

问题一:为什么要登记版权? 告诉你一个行业秘密,其实可以不用登记版权,为什么?因为作品自完成就自动拥有版权,作者可以自己选择登记与否,不登记对版权也没有影响。这里可能有人要问了&#xff0…

xss-labs/level12

这一关首先尝试以下 <script>alert(xss)</script> 不废话 直接看源代码 很明显发现第一个输出点被转义了 根本无法通过script标签来完成弹窗 然后依然是四个隐藏表单 我们可以先试一试在不用抓包工具的前提下 我们能不能将某个隐藏表单给显示出来 构造如下 &l…

Docker的常用基础命令(详细讲解)

首选需要大家搭建好Docker环境&#xff0c;没有环境的可以查看前面的详细讲解安装Docker引擎的文章&#xff08;在CentOS上安装Docker引擎_征服bug的博客-CSDN博客&#xff09; 首先是安装好Docker 引擎 一&#xff0c;如何启动与停止引擎服务 #启动docker systemctl start do…

JAVA-GUI工具的编写-----请求篇

上节我们说到&#xff0c;我们制作了样子货的GUI&#xff0c;但是没有嵌入任何的按钮事件&#xff0c;并且上一次忘记加进去命令执行的确定按钮&#xff0c;让我们简单的回顾一下子吧 import javafx.application.Application; import javafx.collections.FXCollections; impor…

R在GIS中用ggmap地理空间数据分析

概要 做过O2O&#xff08;Online To Offline,在线离线/线上到线下&#xff09;的小伙伴知道&#xff0c;GIS数据需要具体到精准的位置(即经纬度)&#xff1b;对于连锁门店&#xff0c;使用GIS和其它的数据密集型服务遵循一个简单的逻辑&#xff1a;数据有助于企业节省开支&…

Vilatile底层逻辑总结

#### 增加volatile 使用JIT优化的时候 禁止出现语句重排 #### volatile是Java虚拟机提供的轻量级同步机制。 - 保证可见性 - 不保证原子性&#xff08;整体流程成功 整体流程失败&#xff09;如果要保证原子性-加 synchronized 或者直接使用 Automic 原子类 - 禁止指令重排&am…

VBA Regex 正则表达式应用介绍

. VBA正则表达式介绍 正则表达式或 RegEx 用于在字符串中查找特定的字符。 本文将展示一个 VBA RegEx 示例,并演示为什么在 VBA 中使用正则表达式如此强大。 正则表达式是一个比较大的话题,关于这方面的书很多。 同时也是一个让许多人感到害怕的话题,因为它的语法比较神秘和…

【论文笔记】ASYMMETRIC SELF-PLAY FOR AUTOMATIC GOAL DISCOVERY IN ROBOTIC MANIPULATION

【论文笔记】ASYMMETRIC SELF-PLAY FOR AUTOMATIC GOAL DISCOVERY IN ROBOTIC MANIPULATION ABSTRACT 【主要工作】用一个单一的、有目标条件的策略来解决许多机器人操作任务&#xff0c;包括对之前未见过的物体的操作。 【主要方法】对于目标发现过程采用非对称自我博弈方法…

Java 输入输出流简介和应用 (Java实现序列化工具类)

目录 简介 常用模板 实现序列化工具类 简介 应用场景 代码 简介 Java 流相关的类都封装在 java.io 包中&#xff0c;而且每个数据流都是一个对象。所有输入流类都是 InputStream 抽象类&#xff08;字节输入流&#xff09;和 Reader 抽象类&#xff08;字符输入流&#…

ISP Tuning

ISP Tuning1. 简介2. 常用算法2.1 BLC2.2 AWB (处理色温引起的偏色问题)2.2.1 色温&#xff08;Color Temperature:温度越低色温越高&#xff09;2.2.2 为什么需要AWB &#xff08;消除光源颜色的影响&#xff09;2.2.3 AWB的目标2.2.4 如何实现自动白平衡 (先确定色温然后找对…

汽配erp管理系统目前有哪些公司提供了解决方案?

之前的一个朋友提问&#xff1a;我们是一个有200人左右的汽车配件供应商&#xff0c;为了迎合整车厂家的需要&#xff0c;提高自身管理运作的效率&#xff0c;准备上erp管理软件来规范企业的运作。现阶段我们内部管理的信息化程度比较低&#xff0c;从库房到现场作业都是靠纸质…

【Labivew】G语言

&#x1f6a9;write in front&#x1f6a9; &#x1f50e;大家好&#xff0c;我是謓泽&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流&#x1f50e; &#x1f3c5;2021年度博客之星物联网与嵌入式开发TOP5&#xff5…