当Kotlin Flow与Channel相逢

news2024/12/26 10:53:37

Flow之所以用起来香,Flow便捷的操作符功不可没,而想要熟练使用更复杂的操作符,那么需要厘清Flow和Channel的关系。
本篇文章构成:
在这里插入图片描述

1. Flow与Channel 对比

1.1 Flow核心原理与使用场景

原理

先看最简单的Demo:

    fun test0() {
        runBlocking {
            //构造flow
            val flow = flow {
                //下游
                emit("hello world ${Thread.currentThread()}")
            }
            //收集flow
            flow.collect {
                //下游
                println("collect:$it ${Thread.currentThread()}")
            }
        }
    }

打印结果:

collect:hello world Thread[main,5,main] Thread[main,5,main]

说明下游和上游运行在同一线程里。
在这里插入图片描述
一个最基本的flow包含如下几个元素:

  1. 操作符,也即是函数
  2. 上游,通过构造操作符创建
  3. 下游,通过末端操作符构建

我们可以类比流在管道里流动

上游早就准备好了,只是下游没有发出指令,此时上下游是没有建立起关联的,只有当下游渴了,需要水了才会通知上游放水,这个时候上下游才关联起来,管道就建好了。
因此我们认为Flow是冷流。

更多kotlin细节请移步:Kotlin Flow啊,你将流向何方?

使用
基于Flow的特性,通常将其用在提供数据的场景,比如生产数据的模块将生产过程封装到flow的上游里,最终创建了flow对象。
而使用数据的模块就可以通过该flow对象去收集上游的数据,如下:

//提供数据的模块
class StudentInfo {
    fun getInfoFlow() : Flow<String> {
        return flow {
            //假装构造数据
            Thread.sleep(2000)
            emit("name=fish age=18")
        }
    }
}

//消费数据的模块
    fun test1() {
        runBlocking {
            val flow = StudentInfo().getInfoFlow()
            flow.collect {
                println("studentInfo:$it")
            }
        }
    }

1.2 Channel核心原理与使用场景

原理
由上可知,Flow比较被动,在没有收集数据之前,上下游是互不感知的,管道并没有建起来。
而现在我们有个场景:

需要将管道提前建起来,在任何时候都可以在上游生产数据,在下游取数据,此时上下游是可以感知的

先看最简单的Demo:

    fun test2() {
        //提前建立通道/管道
        val channel = Channel<String>()
        GlobalScope.launch {
            //上游放数据(放水)
            delay(200)
            val data = "放水啦"
            println("上游:data=$data ${Thread.currentThread()}")
            channel.send(data)
        }

        GlobalScope.launch {
            val data = channel.receive()
            println("下游收到=$data ${Thread.currentThread()}")
        }
    }

一个最基本的Channel包含如下几个元素:

  1. 创建Channel
  2. 往Channel里放数据(生产)
  3. 从Channel里取数据(消费)

在这里插入图片描述
使用
可以看出与Flow不同的是,生产者、消费者都可以往Channel里存放/取出数据,只是能否进行有效的存放,能否成功取出数据需要根据Channel的状态确定。
Channel最大的特点:

  1. 生产者、消费者访问Channel是线程安全的,也就是说不管生产者和消费者在哪个线程,它们都能安全的存取数据
  2. 数据只能被消费一次,上游发送了1条数据,只要有1个下游消费了数据,则其它下游将不会拿到此数据

2. Flow与Channel 相逢

2.1 Flow切换线程的始末

思考一种场景:需要在flow里进行耗时操作(比如网络请求),外界拿到flow对象后等待收集数据即可。 很容易我们就想到如下写法:

    fun test3() {
        runBlocking {
            //构造flow
            val flow = flow {
                //下游
                //模拟耗时
                thread { 
                    Thread.sleep(3000)
                    emit("hello world ${Thread.currentThread()}")
                }
            }
        }
    }

可惜的是编译不通过:

在这里插入图片描述

因为emit是挂起函数,需要在协程作用域里调用。

当然,添加一个协程作用域也很简单:

    fun test4() {
        runBlocking {
            //构造flow
            val flow = flow {
                //下游
                val coroutineScope = CoroutineScope(Job() + Dispatchers.IO)
                coroutineScope.launch {
                    //模拟耗时,在子线程执行
                    Thread.sleep(3000)
                    emit("hello world ${Thread.currentThread()}")
                }
            }
            flow.collect {
                println("collect:$it")
            }
        }
    }

编译没有报错,满心欢喜执行,等待3s后,事与愿违:
在这里插入图片描述

意思是"检测到了在另一个线程里发射数据,这种行为不是线程安全的因此被禁止了"。

查看源码发现:
在这里插入图片描述

在emit之前会检测emit所在的协程与collect所在协程是否一致,不一致就抛出异常。
显然在我们上面的Demo里,collect属于runBlocking协程,而emit属于我们新开的协程,当然不一样了。

2.2 ChannelFlow 闪亮登场

2.2.1 自制丐版ChannelFlow

既然是线程安全问题,我们很容易想到使用Channel来解决,在此之前需要对Flow进行封装:

//参数为SendChannel扩展函数
class MyFlow(private val block: suspend SendChannel<String>.() -> Unit) : Flow<String> {
    //构造Channel
    private val channel = Channel<String>()
    override suspend fun collect(collector: FlowCollector<String>) {
        val coroutineScope = CoroutineScope(Job() + Dispatchers.IO)
        coroutineScope.launch {
            //启动协程
            //模拟耗时,在子线程执行
            Thread.sleep(3000)
            //把Channel对象传递出去
            block(channel)
        }

        //获取数据
        val data = channel.receive()
        //发射
        collector.emit(data)
    }
}

如上,重写了Flow的collect函数,当外界调用flow.collect时:

  1. 先启动一个协程
  2. 从channel里读取数据,没有数据则挂起当前协程
  3. 1里的协程执行,调用flow的闭包执行上游逻辑
  4. 拿到数据后进行发射,最终传递到collect的闭包

外界使用flow:

    fun test5() {
        runBlocking {
            //构造flow
            val myFlow = MyFlow {
                send("hello world emit 线程: ${Thread.currentThread()}")
            }

            myFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

最终打印:

下游收到=hello world emit 线程: Thread[DefaultDispatcher-worker-1,5,main] collect 线程: Thread[main,5,main]

可以看出,上游、下游在不同的协程里执行,也在不同的线程里执行。
如此一来就满足了需求。

2.2.2 ChannelFlow 核心原理

上面重写的Flow没有使用泛型,也没有对Channel进行关闭,还有其它的点没有完善。
还好官方已经提供了完善的类和操作符,得益于此我们很容易就完成如上需求。

    fun test6() {
        runBlocking {
            //构造flow
            val channelFlow = channelFlow<String> {
                send("hello world emit 线程: ${Thread.currentThread()}")
            }
            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

接着来简单分析其原理:

#ChannelFlow.kt
private open class ChannelFlowBuilder<T>(
    //闭包对象
    private val block: suspend ProducerScope<T>.() -> Unit,
    context: CoroutineContext = EmptyCoroutineContext,
    //Channel模式
    capacity: Int = Channel.BUFFERED,
    //Buffer满之后的处理方式,此处是挂起
    onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND
) : ChannelFlow<T>(context, capacity, onBufferOverflow) {
    //...
    override suspend fun collectTo(scope: ProducerScope<T>) =
        //调用闭包
        block(scope)
    //...
}

public abstract class ChannelFlow<T>(
    // upstream context
    @JvmField public val context: CoroutineContext,
    // buffer capacity between upstream and downstream context
    @JvmField public val capacity: Int,
    // buffer overflow strategy
    @JvmField public val onBufferOverflow: BufferOverflow
) : FusibleFlow<T> {
    
    //produceImpl 开启的新协程会调用这
    internal val collectToFun: suspend (ProducerScope<T>) -> Unit
        get() = { collectTo(it) }
    
    public open fun produceImpl(scope: CoroutineScope): ReceiveChannel<T> =
        //创建Channel协程,返回Channel对象
        scope.produce(context, produceCapacity, onBufferOverflow, start = CoroutineStart.ATOMIC, block = collectToFun)

    //重写collect函数
    override suspend fun collect(collector: FlowCollector<T>): Unit =
        //开启协程
        coroutineScope {
            //发射数据
            collector.emitAll(produceImpl(this))
        }
}

produceImpl函数并不耗时,仅仅只是开启了新的协程。
接着来看collector.emitAll:

#Channels.kt
private suspend fun <T> FlowCollector<T>.emitAllImpl(channel: ReceiveChannel<T>, consume: Boolean) {
    ensureActive()
    var cause: Throwable? = null
    try {
        //循环从Channel读取数据
        while (true) {
            //从Channel获取数据
            val result = run { channel.receiveCatching() }
            if (result.isClosed) {
                //如果Channel关闭了,也就是上游关闭了,则退出循环
                result.exceptionOrNull()?.let { throw it }
                break // returns normally when result.closeCause == null
            }
            //发射数据
            emit(result.getOrThrow())
        }
    } catch (e: Throwable) {
        cause = e
        throw e
    } finally {
        //关闭Channel
        if (consume) channel.cancelConsumed(cause)
    }
}

从源码可能无法一眼厘清其流程,老规矩上图就会清晰明了。

在这里插入图片描述

上一小结丐版的实现就是参照channelFlow,若是了解了丐版,再来了解官方豪华版就比较容易。

2.2.3 ChannelFlow 应用场景

查看ChannelFlow衍生的子类:
在这里插入图片描述

这些子类是Flow里各种复杂操作符的基础,如:
buffer、flowOn、flatMapLatest、flatMapMerge等。
因此掌握了ChannelFlow再来看各种操作符就会豁然开朗。

2.3 callbackFlow 拯救你的回调

2.3.1 原理

使用channelFlow {},虽然能够在新的协程里执行闭包,但由于新协程的调度器是使用collect所在协程调度器不够灵活:

    fun test6() {
        runBlocking {
            //构造flow
            val channelFlow = channelFlow<String> {
                send("hello world emit 线程: ${Thread.currentThread()}")
            }
            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

collect所在的协程为runBlocking协程,而send函数虽然在新的协程里,但它的协程调度器使用的是collect协程的,因此send函数与collect函数所运行的线程是同一个线程。
虽然我们可以更改外层的调度器使之运行在不同的线程如:

    fun test6() {
        GlobalScope.launch {
            //构造flow
            val channelFlow = channelFlow<String> {
                send("hello world emit 线程: ${Thread.currentThread()}")
            }
            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

但终归不灵活,从设计的角度来说,Flow(对象)的提供者并不关心使用者在什么样的环境下进行collect操作。

还是以网络请求为例:

fun getName(callback:NetResult<String>) {
    thread {
        //假装从网络获取
        Thread.sleep(2000)
        callback.onSuc("I'm fish")
    }
}

interface NetResult<T> {
    fun onSuc(t:T)
    fun onFail(err:String)
}

如上,存在这样一个网络请求,在子线程里进行网络请求,并通过回调通知外部调用者。
很典型的一个请求回调,该怎么把它封装为Flow呢?尝试用channelFlow进行封装:

    fun test7() {
        runBlocking {
            //构造flow
            val channelFlow = channelFlow {
                getName(object : NetResult<String> {
                    override fun onSuc(t: String) {
                        println("begin send")
                        trySend("hello world emit 线程: ${Thread.currentThread()}")
                        println("stop send")
                    }
                    override fun onFail(err: String) {
                    }
                })
            }

            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

看似美好,实则却收不到数据,明明"begin send"和"stop send"都打印了,为啥collect闭包里没有打印呢?
getName函数内部开启了线程,因此它本身并不是耗时操作,由此可知channelFlow闭包很快就执行完成了。
由ChannelFlow源码可知:CoroutineScope.produce的闭包执行结束后会关闭Channel:

既然channel都关闭了,当子线程里回调onSuc并执行trySend并不会再往channel发送数据,collect当然就收不到了。

要解决这个问题也很简单:不让协程关闭channel,换句话说只要协程没有结束,那么channel就不会被关闭。而让协程不结束,最直接的方法就是在协程里调用挂起函数。
刚好,官方也提供了相应的挂起函数:

    fun test7() {
        runBlocking {
            //构造flow
            val channelFlow = channelFlow {
                getName(object : NetResult<String> {
                    override fun onSuc(t: String) {
                        println("begin send")
                        trySend("hello world emit 线程: ${Thread.currentThread()}")
                        println("stop send")
                        //关闭channel,触发awaitClose闭包执行
                        close()
                    }
                    override fun onFail(err: String) {
                    }
                })

                //挂起函数
                awaitClose {
                    //走到此,channel关闭
                    println("awaitClose")
                }
            }

            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

相较上个Demo而言,增加了2点:

  1. awaitClose 挂起协程,该协程不结束,则channel不被关闭
  2. channel使用完成后需要释放资源,主动调用channel的close函数,该函数最终会触发awaitClose闭包执行,在闭包里做一些释放资源的操作

你可能会说以上用法不太友好,如果不知道有awaitClose这函数,都无法排查为啥没收到数据。 嗯,这官方也考虑到了,那就是callbackFlow。

2.3.2 使用

和channelFlow的使用一模一样:

    fun test8() {
        runBlocking {
            //构造flow
            val channelFlow = callbackFlow {
                getName(object : NetResult<String> {
                    override fun onSuc(t: String) {
                        println("begin send")
                        trySend("hello world emit 线程: ${Thread.currentThread()}")
                        println("stop send")
                        //关闭channel,触发awaitClose闭包执行
//                        close()
                    }
                    override fun onFail(err: String) {
                    }
                })

                //挂起函数
                awaitClose {
                    //走到此,channel关闭
                    println("awaitClose")
                }
            }

            channelFlow.collect {
                println("下游收到=$it collect 线程: ${Thread.currentThread()}")
            }
        }
    }

有了callbackFlow,我们就可以优雅的将回调转为Flow提供给外部调用者使用。

3. Flow与Channel 互转

3.1 Channel 转 Flow

Flow和Channel相遇,碰撞出了ChannelFlow,ChannelFlow顾名思义,既是Channel也是Flow,因此可以作为中介对Flow与Channel进行转换。

    fun test9() {
        runBlocking {
            val channel = Channel<String>()
            val flow = channel.receiveAsFlow()
            GlobalScope.launch {
                flow.collect {
                    println("collect:$it")
                }
            }
            delay(200)
            channel.send("hello fish")
        }
    }

channel通过send,flow通过collect收集。

3.2 Flow 转 Channel

    fun test10() {
        runBlocking {
            val flow = flow {
                emit("hello fish")
            }
            val channel = flow.produceIn(this)
            val data = channel.receive()
            println("data:$data")
        }
    }

flow.produceIn(this) 触发collect操作,进而执行flow闭包,emit将数据放到channel里,最后通过channel.receive()取数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/455921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

编写 LuCI CBI 模型

编写 LuCI CBI 模型 CBI模型是描述UCI配置文件结构的Lua文件&#xff0c;并且CBI解析器将lua文件转为HTML呈现给用户 。 所有 CBI 模型文件都必须返回类型为luci.cbi.Map的对象。 CBI 模型文件的范围由 luci.cbi 模块的内容和 luci.i18n 的转换函数自动扩展。 CBI控件类型汇总 …

如何使用ESP32-CAM构建一个人脸识别系统

有许多人识别系统使用签名、指纹、语音、手部几何、人脸识别等来识别人&#xff0c;但除了人脸识别系统。 人脸识别系统不仅可以用于安全目的来识别公共场所的人员&#xff0c;还可以用于办公室和学校的考勤目的。 在这个项目中&#xff0c;我们将使用 ESP32-CAM 构建一个人脸识…

eclipse for abap下载及配置安装

一&#xff0c;下载eclipse &#xff0c;地址 https://www.eclipse.org/downloads/download.php?file/oomph/epp/2023-03/R/eclipse-inst-jre-win64.exe 可以选择(大连东软信息学院)端口下载&#xff0c;这样开一些&#xff0c; 二&#xff1a;双击安装&#xff0c;安装FOR…

放弃手动测试,快来了解JMeter压测神器的安装和使用吧~~

目录&#xff1a;导读 引言 jmeter的安装 JMeter是干什么的 JMeter都可以做那些测试 JMeter的使用和组件介绍 下面我们进行XML格式的实战练习 jmeter与postman的区别 JSON的插件 另附视频教程资源 引言 你是否曾经为手动测试而苦恼&#xff1f;是不是觉得手动测试太费…

Windows Java JavaFX Idea 开发环境搭建

博文目录 文章目录 JavaFX 简单说明JavaFX 版本说明JavaFX 与 JDK 的关系JavaFX 与 JDK Modular (JDK 9 模块化系统)JavaFX 模块说明 (JavaFX 20)JavaFX Scene Builder构建 JavaFX 应用程序的两种选择 环境搭建 建议先阅读下方引用的官方文档, 与本章节做相互印证与理解版本选…

Vue 3组件传值 、组件通信

本文采用<script setup />的写法&#xff0c;比options API更自由。那么我们就来说说以下七种组件通信方式&#xff1a; props emit v-model refs provide/inject eventBus vuex/pinia 举个例子 本文将使用下面的演示&#xff0c;如下图所示&#xff1a; 上图中…

【社区图书馆】《新程序员005:开源深度指南 新金融背后的科技力量》

各位CSDN的uu们你们好呀&#xff0c;今天&#xff0c;小雅兰来给大家推荐一本书&#xff0c;此书的书名为新程序员005&#xff1a;开源深度指南 & 新金融背后的科技力量&#xff0c;为什么小雅兰今天要给大家推荐这样一本书呢&#xff1f;好啦&#xff0c;现在&#xff0c;…

[python][pcl]python-pcl案例之兔子显示

兔子pcd文件下载&#xff1a;firc.lanzoux.com/iLfSgg749ab# -*- coding: utf-8 -*- # Point cloud library import pcl import pcl.pcl_visualization# Opencv # import opencv import cv2def main():# These are track bar initial settings adjusted to the given pointclou…

牛客网Verilog刷题——VL12

牛客网Verilog刷题——VL12 题目答案 题目 4bit超前进位加法器的逻辑表达式如下&#xff1a; G i G_i Gi​ A i A_i Ai​ B i B_i Bi​&#xff0c; P i P_i Pi​ A i A_i Ai​ ⊕ \oplus ⊕ B i B_i Bi​   和&#xff1a; S i S_i Si​ P i P_i Pi​ ⊕ \oplus ⊕ C i − 1…

DHCP协议详解

DHCP是什么 1.1 DHCP定义 DHCP&#xff08; Dynamic Host Configuration Protocol&#xff0c; 动态主机配置协议&#xff09;定义&#xff1a; 存在于应用层&#xff08;OSI&#xff09; 前身是BOOTP&#xff08;Bootstrap Protocol&#xff09;协议 是一个使用UDP&#xff08…

如何正确选择集体渲染(云渲染)和gpu离线渲染

在数字娱乐领域&#xff0c;渲染是制作高质量影像的关键步骤之一。随着技术的不断发展和应用的广泛普及&#xff0c;渲染方式也在不断演进。目前&#xff0c;集体渲染&#xff08;云渲染&#xff09;和GPU离线渲染是两种比较流行的渲染方式。那么&#xff0c;哪种方式会更快呢&…

一文了解什么是5G

5G是第五代移动网络。它是继1G、2G、3G、4G网络之后的新的全球无线标准。5G 支持一种新型网络&#xff0c;旨在将几乎所有人和所有事物连接在一起&#xff0c;包括机器、物体和设备。 一、前几代移动网络和5G有什么区别 第一代 – 1G 1980 年代&#xff1a;1G 传送模拟语音。…

软件测试标准升级|新版25000标准解读

广电计量 目录 收起 一、覆盖软件产品八大特性的测试依据及准则 二、信息安全测试的关键要点 三、兼容性测试的关键要点 四、功能测试的关键要点 五、性能效率测试的关键要点 六、易用性测试的关键要点 七、可靠性测试的关键要点 八、维护性测试的关键要点 九、可移植…

Linux各文件权限

参考:https://blog.csdn.net/weixin_45423515/article/details/126652740 一、切换root权限 既然root是最大的权限&#xff0c;那么这里就来了解一下如果切换到root用户。 su - //切换成root 这就是切换人的权限&#xff0c;但是大多数情况是root权限不会轻易的分给普通用户…

NIS服务

NIS 文章目录 NIS一、NIS二、简介2.1 NIS的产生2.2 什么是NIS&#xff1f; 三、NIS的相关组件3.1 服务端3.1.1 配置文件3.1.2 主要服务3.1.3 数据库相关指令 3.2 客户端3.2.1 配置文件3.2.2 主要指令 四、NIS环境4.1 NIS所需的软件包4.2 NIS Server (Master/Slave)4.3 NIS Clie…

unity3d---物体加点击事件

目录 1.给需要点击点物体加collider 2.层级面板加EventSystem 3. 相机加Physics Raycaster 4.物体单独响应点击事件 5.控制脚本实现各物体的点击事件 6.点击ui时屏蔽 物体点击事件 1.给需要点击点物体加collider 2.层级面板加EventSystem 3. 相机加Physics Raycaster 2d…

机器学习 Rider数据集分析和预测

介绍数据集 ride_id&#xff1a;乘车ID rideable_type&#xff1a;乘车类型 started_at&#xff1a;开始日期 ended_at &#xff1a;结束日期 start_station_name&#xff1a;开始站的名字 start_station_id&#xff1a;开始站的ID end_station_name&#xff1a;结束站的名字 …

魔百和UNT403G 国科芯片2+8 安卓9.0 免拆机纯净线刷包

固件特点&#xff1a; 1、本固件在UNT403G 盒子上测试可用&#xff0c; 其它盒子请慎 重使用&#xff1b; 2、支持原装遥控器&#xff0c;语音蓝牙遥控器&#xff1b; 3、固件压缩包有刷机教程&#xff0c;请一定仔细阅读。 4、刷机后三网通用&#xff0c;可自由安装应用&#…

NewBing 边栏快捷插件没有了!如何解决?如何脱离浏览器使用 New Bing?

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;蚂蚁集团高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《EffectiveJava》独家解析》专栏作者。 热门文章推荐…

【移动端网页布局】流式布局 ① ( 流式布局简介 | 百分比布局 / 非固定像素布局 | 根据屏幕尺寸 / 设备类型自动调整网页布局 )

文章目录 一、流式布局简介二、流式布局代码示例 一、流式布局简介 流式布局 又称为 百分比布局 / 非固定像素布局 ; 为 流式布局 中 盒子模型 设置 百分比宽度 , 其大小可以根据屏幕宽度自适应伸缩 , 该盒子没有像素限制 , 内容自动向左右两边填充 ; 流式布局 可以 根据 设备…