用好Python自然语言工具包-- 实例“基于本地知识库的自动问答”

news2024/9/23 11:21:56

 

首先鸣谢thomas-yanxin

本问中示例来自他在GitHub上的开源项目“基于本地知识库的自动问答”,链接如下:

thomas-yanxin/LangChain-ChatGLM-Webui: 基于LangChain和ChatGLM-6B的针对本地知识库的自动问答 (github.com) 


目录

1. 基础知识:

2. NLTK库的使用

3. 实例代码分析

设备的定义

函数定义:从网络上搜索相关信息

 ​​​​​​​函数定义:加载文件

函数定义:初始化一个向量存储器


1. 基础知识:

NLTK是一个领先的平台,用于构建处理自然语言数据的Python程序。它提供了易于使用的接口,可以访问50多个语料库和词汇资源,如WordNet,以及一套用于分类、分词、词干提取、标注、解析和语义推理的文本处理库、工业级自然语言处理库的封装和活跃的讨论论坛。

什么是tokenization?

Tokenize是指将一段文本分割成单独的词语或符号序列的过程。在自然语言处理中,文本预处理通常包括将原始文本数据转换为可供分析的结构化数据。分词是这个过程中的一个重要步骤,它可以将一段文本分割成有意义的单元,例如单词、标点符号、数字、缩略词等等。

分词技术可以基于不同的规则和算法实现,如空格、标点符号、停用词、正则表达式、最大匹配法等。分词的准确性和效率对于后续的自然语言处理任务(例如词性标注、命名实体识别、文本分类等)的效果有很大影响,因此它是自然语言处理中一个非常重要的步骤。

2. NLTK库的使用

在python中安装NLTK库

pip install NLTK

导入NLTK库

import nltk # 导入NLTK for tokenization

将语料数据导入数据列表中

nltk.data.path.append('./nltk_data')

NLTK是一个用于处理自然语言数据的Python库,其中包含了许多用于自然语言处理的数据集和语料库,这些数据通常存储在默认路径中。然而,有时用户可能需要在其他地方存储这些数据,或者需要加载自己的数据集和语料库,这时就需要将新的路径添加到nltk.data.path路径列表中。

然而,有时用户可能需要在其他地方存储这些数据,或者需要加载自己的数据集和语料库,这时就需要将新的路径添加到nltk.data.path路径列表中。

具体来说,这行代码使用了Python列表的append()方法,将"./nltk_data"添加到nltk.data.path路径列表中的末尾。这样,当使用NLTK库中的函数和方法时,程序将首先搜索默认路径,如果没有找到所需的数据,就会在路径列表中的其他位置继续搜索,直到找到所需的数据为止。这种方式可以方便地扩展NLTK库的数据集和语料库,使其适应用户的特定需求。

字典变量的定义

## 这段代码定义了一个名为 embedding_model_dict 的字典变量,其中包含了5个键值对,每个键值对表示一个预训练的中文词向量模型的名称和对应的地址。
embedding_model_dict = { # 词向量模型
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh", 
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "ernie-medium": "nghuyong/ernie-3.0-medium-zh",
    "ernie-xbase": "nghuyong/ernie-3.0-xbase-zh",
    "text2vec-base": "GanymedeNil/text2vec-base-chinese"
}

## 这段代码定义了一个名为 llm_model_dict 的字典变量,其中包含了5个键值对,每个键值对表示一个预训练的中文语言模型的名称和对应的地址。
llm_model_dict = {
    "ChatGLM-6B": "THUDM/chatglm-6b",
    "ChatGLM-6B-int4": "THUDM/chatglm-6b-int4",
    "ChatGLM-6B-int8": "THUDM/chatglm-6b-int8",
    "ChatGLM-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
    "ChatGLM-6b-local": "/data/chatglm-6b"
}

这段代码定义了两个字典变量。第一个字典变量 embedding_model_dict 包含了五个键值对,每个键值对表示一个中文词向量模型的名称和对应的地址。具体来说,这些模型是以预训练方式生成的,可以用于将中文文本映射到连续的向量空间中。

第二个字典变量 llm_model_dict 包含了五个键值对,每个键值对表示一个预训练的中文语言模型的名称和对应的地址。这些模型可以用于生成中文文本,比如回答问题、生成对话等。其中一些模型的地址指向公共可用的模型,而另一些模型的地址是本地地址,表示这些模型存储在计算机本地的某个路径中。

3. 实例代码分析

我们要分析的就是来自GitHub上的开源项目“基于本地知识库的自动问答”项目中的app.py文件

上边已经分析了NLTK的库的导入、语料数据的导入、字典变量的定义,接下来我们继续研究。

设备的定义

DEVICE = "cuda" if torch.cuda.is_available(
) else "mps" if torch.backends.mps.is_available() else "cpu"

这段代码定义了一个变量 DEVICE,用于指定代码运行所使用的设备。如果当前系统支持CUDA设备(即具有NVIDIA GPU),则将 DEVICE 设置为 "cuda",表示使用GPU加速运算。如果当前系统支持MPS(Multi-Process Service),则将 DEVICE 设置为 "mps",表示使用MPS加速运算。否则,将 DEVICE 设置为 "cpu",表示使用CPU运算。

具体来说,这段代码通过调用 torch.cuda.is_available() 函数检查当前系统是否支持CUDA设备,如果支持则将 DEVICE 设置为 "cuda"。否则,通过调用 torch.backends.mps.is_available() 函数检查当前系统是否支持MPS,如果支持则将 DEVICE 设置为 "mps"。如果系统不支持CUDA或MPS,则将 DEVICE 设置为 "cpu"

这里解释一下torch:

torch是一个开源机器学习框架,基于Python语言,提供了丰富的工具和库,用于构建深度学习模型和进行科学计算。torch框架是由Facebook AI Research团队开发,其主要优势在于它支持张量计算和自动求导,同时提供了高效的GPU加速功能,因此广泛应用于深度学习领域。

torch的核心是张量(tensor)数据结构,它是一种多维数组,类似于numpy中的数组,但可以在GPU上运行加速。torch框架提供了大量的张量操作函数,如加减乘除、矩阵乘法、卷积操作等,同时还支持自动求导和高阶函数(例如梯度下降算法、优化器等)。此外,torch还包括了许多已经预训练好的深度学习模型,以及用于数据处理和可视化的工具。

函数定义:从网络上搜索相关信息

def search_web(query):

    SESSION.proxies = {
        "http": f"socks5h://localhost:7890",
        "https": f"socks5h://localhost:7890"
    }
    results = ddg(query)
    web_content = ''
    if results:
        for result in results:
            web_content += result['body']
    return web_content

这个函数将一个查询作为输入参数。

1)函数的第一行为SESSION变量指定了代理设置,该变量其他代码文件中定义

2)然后,它使用ddg()函数来获取给定查询的搜索结果。

3)代码的下一行初始化了一个名为web_content的空字符串变量。

4)接下来,它检查是否有任何来自上一步骤的结果。

5)如果有任何结果,那么它会遍历这些结果,提取每个结果的“body”部分并将其添加到web_content变量中。

6)最后,该函数返回web_content变量的最终值。

这个函数是一个用于获取指定查询在duckduckgo搜索引擎上的搜索结果,并将结果内容汇总到一个字符串中的函数,同时它使用SESSION变量指定了代理设置。

其中用到的ddg()函数为duckduckgo_search中的函数(路径:\Python39\Lib\site-packages\duckduckgo_search\ddg.py),是指代duckduckgo搜索引擎的搜索函数。

 ​​​​​​​函数定义:加载文件

def load_file(filepath):
    if filepath.lower().endswith(".pdf"):
        loader = UnstructuredFileLoader(filepath)
        textsplitter = ChineseTextSplitter(pdf=True)
        docs = loader.load_and_split(textsplitter)
    else:
        loader = UnstructuredFileLoader(filepath, mode="elements")
        textsplitter = ChineseTextSplitter(pdf=False)
        docs = loader.load_and_split(text_splitter=textsplitter)
    return docs

这段代码定义了一个名为 load_file 的函数,用于加载指定路径下的文本文件,并将其拆分为多个文档(即文档分块)。该函数接受一个参数 filepath,表示指定的文本文件路径。

首先,函数检查文件路径的后缀名是否为 .pdf,如果是,则使用 UnstructuredFileLoader 对象加载指定的PDF文件,并使用 ChineseTextSplitter 对象将PDF文档分割为多个文档。如果文件路径的后缀名不是 .pdf,则使用 UnstructuredFileLoader 对象以 elements 模式加载文件,并使用 ChineseTextSplitter 对象将文件拆分为多个文档。

最后,函数返回拆分后的文档列表。每个文档都表示一个字符串对象,其中包含原始文本文件中的一部分内容。文档的具体内容取决于拆分器(即 ChineseTextSplitter 对象)的实现方式。

这里解释下为何要进行“文档分块”?

进行文档分块是为了更好地处理大型文本数据。在自然语言处理领域,处理整个文本文件往往不是最佳选择,因为大型文本文件可能包含数千甚至数百万的单词或字符,而处理这样大量的文本数据可能会耗费大量的计算资源,而且对于一些任务(如语言模型训练)可能会导致内存不足或内存泄漏的问题。

为了避免这些问题,可以将大型文本文件分割成多个较小的文本块,即文档分块。每个文档分块通常包含文本文件的一部分内容,例如一段或几段文本。通过将大型文本文件分割成多个文档分块,可以将文本处理任务分解成多个较小的子任务,从而降低整个处理过程的计算复杂度,并且可以更加高效地使用内存资源。

文档分块还有另一个优点,即可以更好地控制训练数据的大小。在一些机器学习任务中,数据的大小往往是一个关键问题,因为过大的训练数据可能会导致过拟合或训练时间过长。通过对文本文件进行分块,可以将训练数据的大小控制在合理的范围内,从而更好地控制训练过程的效率和质量。

函数定义:初始化一个向量存储器

def init_knowledge_vector_store(embedding_model, filepath):
    embeddings = HuggingFaceEmbeddings(
        model_name=embedding_model_dict[embedding_model], )
    embeddings.client = sentence_transformers.SentenceTransformer(
        embeddings.model_name, device=DEVICE)

    docs = load_file(filepath)

    vector_store = FAISS.from_documents(docs, embeddings)
    return vector_store

这段代码定义了一个名为 init_knowledge_vector_store 的函数,用于初始化一个向量存储器,用于存储知识库中文档的向量表示。该函数接受两个参数:embedding_model 表示要使用的预训练词向量模型的名称(如 "ernie-tiny"),filepath 表示知识库文件的路径。

首先,该函数创建一个 HuggingFaceEmbeddings 对象,使用预训练的词向量模型来生成词向量。该对象从 embedding_model_dict 字典中获取 embedding_model 对应的预训练词向量模型地址,并使用它初始化。然后,它创建一个 SentenceTransformer 对象,使用 HuggingFaceEmbeddings 对象生成的词向量模型,并将该对象的 device 属性设置为全局变量 DEVICE,以指定使用CPU或GPU设备进行计算。SentenceTransformer 对象用于将文档转换为向量表示,用于在向量存储器中进行检索。

接下来,函数使用 load_file() 函数加载指定路径下的文本文件,并将其拆分为多个文档。每个文档都表示原始文本文件中的一部分内容,例如一段或几段文本。

最后,函数使用 FAISS 库将文档向量存储在一个向量存储器中,并将该向量存储器作为函数的返回值。 FAISS 是一种高效的向量检索库,它支持基于余弦相似度和欧几里得距离等多种相似度度量方式。 from_documents 方法是 FAISS 库提供的一种函数,它将文档向量存储在一个向量存储器中,以便于进行相似度匹配和向量检索。

函数定义:获取基于知识的答案

def get_knowledge_based_answer(query,
                               large_language_model,
                               vector_store,
                               VECTOR_SEARCH_TOP_K,
                               web_content,
                               history_len,
                               temperature,
                               top_p,
                               chat_history=[]):
    if web_content:
        prompt_template = f"""基于以下已知信息,简洁和专业的来回答用户的问题。
                            如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
                            已知网络检索内容:{web_content}""" + """
                            已知内容:
                            {context}
                            问题:
                            {question}"""
    else:
        prompt_template = """基于以下已知信息,请简洁并专业地回答用户的问题。
            如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息"。不允许在答案中添加编造成分。另外,答案请使用中文。

            已知内容:
            {context}

            问题:
            {question}"""
    prompt = PromptTemplate(template=prompt_template,
                            input_variables=["context", "question"])
    chatLLM = ChatGLM()
    chatLLM.load_model(model_name_or_path=llm_model_dict[large_language_model])
    chatLLM.history = chat_history[-history_len:] if history_len > 0 else []

    chatLLM.temperature = temperature
    chatLLM.top_p = top_p

    knowledge_chain = RetrievalQA.from_llm(
        llm=chatLLM,
        retriever=vector_store.as_retriever(
            search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
        prompt=prompt)
    knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
        input_variables=["page_content"], template="{page_content}")

    knowledge_chain.return_source_documents = True

    result = knowledge_chain({"query": query})
    return result

这段代码定义了一个名为 get_knowledge_based_answer 的函数,用于基于预定义的知识库,回答用户提出的问题。该函数接受多个参数,包括:

  • query:表示用户提出的问题;
  • large_language_model:表示要使用的大型语言模型的名称;
  • vector_store:表示存储文档向量的向量存储器;
  • VECTOR_SEARCH_TOP_K:表示要返回的文档数量;
  • web_content:表示从网络检索中获得的已知信息;
  • history_len:表示要考虑的历史对话轮数;
  • temperature:表示用于控制生成文本多样性的温度参数;
  • top_p:表示用于控制生成文本长度的 top-p 参数;
  • chat_history:表示当前对话的历史记录。

该函数首先根据 web_content 参数确定不同的提示文本模板,并将其传递给 PromptTemplate 对象,用于生成提示文本。然后,该函数使用 ChatGLM 类创建一个大型语言模型对象,并使用 load_model 方法从指定的模型名称或路径中加载模型。接下来,函数设置该模型的 temperaturetop_p 参数。

然后,函数使用 RetrievalQA.from_llm 方法创建一个 RetrievalQA 对象,该对象将大型语言模型和向量存储器作为检索器,并将提示文本作为提示。该对象使用检索器在向量存储器中查找与查询最相似的文档,并使用大型语言模型生成答案。查询结果包含了最有可能的答案,以及相应的文档信息和相似度分数。

最后,函数返回 result 变量,其中包含与查询最相关的答案、相关文档信息和相似度分数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/452780.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM调优最佳参数

项目背景 C端的项目,用户量比较多,请求比较多。 启动参数表 Xmx指定应用程序可用的最大堆大小。 Xms指定应用程序可用的最小堆大小。 (一般情况下,需要设置Xmx和Xms为相等的值,且为一个固定的值) 如果该值…

HCIP之链路聚合、VRRP

链路聚合 链路聚合 --- 可以将多个物理接口绑定成一个逻辑接口,即将N条物理链路聚合为一条逻辑链路。可以在不升级硬件的条件下,达到增加带宽的效果 我们将逻辑链路,称为聚合链路,在华为设备中称为ETH-TRUNK链路(这个技…

Vue表单进阶操作

多选框另类使用场景 这个复选框和上面爱好那个复选框是不一样的,它不需要收集value值,只需要知道是否被选择,也就是ture或false,这时候就可以安装输入框的方式去写,直接去定义字符串,而不是数组 然后把全部…

“esp8266mod模块连接机智云Arduino实现pwm调节led的亮度“+_+

经过几天的漫长的探索和调试,终于连上机智云了。 历经的困难:esp8266总是连接机智云app超时,连接无反应,无数据。 1、机智云开发者中心,新建数据点,生成muc代码包,具体配置可以参考其他文章。…

go破冰之旅·5·常量、变量、数据类型

成体系的、快速学通Go,就在此时,持续连载! 上一篇: https://lan6193.blog.csdn.net/article/details/123454411https://lan6193.blog.csdn.net/article/details/123454411上文熟悉了Go的基础符号、基础规则,本文我们…

前端项目代码规范

一、变量与函数的命名(变量名和函数名是最好的注释) 通常情况下函数小陀峰、类名大陀峰、变量短横线/小陀峰、const全大写单词要表达出正确的语义,如:array类型或其它集合类型用英语复数格式、其它类型不要用复数格式区分函数为功…

async/await 在 C# 语言中是如何工作的?(下)

接《async/await 在 C# 语言中是如何工作的?(上)》、《async/await 在 C# 语言中是如何工作的?(中)》,今天我们继续介绍 SynchronizationContext 和 ConfigureAwait。 ▌SynchronizationContext…

【SVN已解决】修改svn服务端地址为ip或者域名地址的方法

介绍 这里是小编成长之路的历程,也是小编的学习之路。希望和各位大佬们一起成长! 以下为小编最喜欢的两句话: 要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。 一个人为什么要努力&a…

Vue之指令详解与自定义指令

指令 想要了解自定义指令,那肯定得先明白什么是指令。 指令的本质:语法糖,标志位。在编译阶段 render 函数里,会把指令编译成 JavaScript 代码。 常见的Vue内置指令有: v-on 即 。v-on:click”function“&#xff…

Node【Express框架【二】】

文章目录 🌟前言🌟中间件🌟中间件函数🌟什么是中间件函数🌟中间件函数可以做什么 🌟Express中间件的类型🌟应用级中间件🌟路由器级中间件🌟错误处理中间件🌟内…

人为惨案之kube-controller-manager 不断重启根因溯源

文章目录 背景问题发现排查CSI provision排查kube-controller-manager查看controller log紧急恢复求助chatgpt 背景 2023年4月21日10:38:07,在集群中测试RBAC的时候,在kuboard的界面神出鬼没的删除了几个clusterRole。练习一个CKA的练习题目. Create a…

如何实现计算机上的文件共享

文件共享 第一步:设置无线热点第二步:设置本地用户权限第三步:设置共享文件夹第四步:打开自己的移动热点,并且让对方连接自己的热点第五步:让对方的电脑进行连接自己共享的文件 第一步:设置无线…

React-Redux详解

React-Redux详解 前言 React-Redux是一个用于在React应用中管理状态的第三方库。它是基于Redux架构的,提供了一种在React应用中高效管理状态的方式。React-Redux通过将Redux的核心概念和React组件相结合,使得在React应用中使用Redux变得更加简单和方便。…

从WebGL到Babylonjs

从WebGL到Babylonjs 一、关于WebGL 前世今生 OpenGL > OpenGL ES > WebGL本质:通过js代码去调用OpenGL的一系列Api 二、WebGL程序的构成 1、一个简单的webgl程序 const canvas document.querySelector(canvas); const gl canvas.getContext(webgl2); c…

llama.cpp一种在本地CPU上部署的量化模型(超低配推理llama)

0x00 背景 前不久,Meta前脚发布完开源大语言模型LLaMA, 随后就被网友“泄漏”,直接放了一个磁力链接下载链接。 然而那些手头没有顶级显卡的朋友们,就只能看看而已了 但是 Georgi Gerganov 开源了一个项目llama.cpp ggergano…

HBase高可用

一、HBase高可用简介 HBase集群如果只有一个master,一旦master出现故障,将导致整个集群无法使用,所以在实际的生产环境中,需要搭建HBase的高可用,也就是让HMaster高可用,也就是需要再选择一个或多个节点也…

【C语言】那些 “虾仁猪心“ 的坑题

本章介绍 最近翻笔记,整理了下那些日子里面掉过的坑题,说多都是泪!!也许是自己的储备知识不足,才造成的大坑,今天把题拿出来给大家溜溜,看大家做时候有没有踩坑! 文章目录 1:第一题2…

项目笔记-瑞吉外卖

文章目录 1.业务开发day011.软件开发整体介绍2.项目整体介绍:star:3.开发环境搭建4.登录功能:star4.1代码实现 5.退出功能6.页面效果出现 1.业务开发 day01 1.软件开发整体介绍 2.项目整体介绍⭐️ 后端:管理菜品和员工信息前台:通过手机端…

根据cadence设计图学习硬件知识 day03 了解 一些芯片 和 数据手册下载的地方

1. MT53D512M32D2DS 芯片(动态随机存取存储器)的技术指标 1.1 16n Prefetch (预加载) (n --芯片位宽) DDR 体系 链接:DDR扫盲—-关于Prefetch(预取)与Burst(突发)的深入讨论_ddr prefetch_qq_25814297-npl的博客-CSDN博客 1.2 每个通…

网络层重点协议之【IP协议】

0. IP地址组成 IP地址分为两个部分,网络号和主机号 网络号:标识网段,保证相互连接的两个网段具有不同的标识主机号:标识主机,同一网段内,主机之间具有相同的网络号,但是必须有不同的主机号 一…