【LeetCode】987.二叉树的垂序遍历

news2024/10/6 2:23:13

二叉树遍历系列

  • 144.二叉树的前序遍历
  • 94.二叉树的中序遍历
  • 145.二叉树的后续遍历
  • 102.二叉树的层序遍历
  • 107.二叉树的层序遍历II
  • 103.二叉树的锯齿形层序遍历(之字形遍历)
  • 199.二叉树的右视图

二叉树的垂序遍历目录

  • 二叉树遍历系列
  • 1.问题
    • 示例 1
    • 示例 2
    • 示例 3
  • 2.解题思路
  • 3.代码


1.问题

给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。

对位于 (row, col) 的每个结点而言,其左右子结点分别位于 (row + 1, col - 1) 和 (row + 1, col + 1) 。树的根结点位于 (0, 0) 。

二叉树的 垂序遍历 从最左边的列开始直到最右边的列结束,按列索引每一列上的所有结点,形成一个按出现位置从上到下排序的有序列表。如果同行同列上有多个结点,则按结点的值从小到大进行排序。

返回二叉树的 垂序遍历 序列。

示例 1

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[9],[3,15],[20],[7]]

解释
列 -1 :只有结点 9 在此列中。
列 0 :只有结点 3 和 15 在此列中,按从上到下顺序。
列 1 :只有结点 20 在此列中。
列 2 :只有结点 7 在此列中。

示例 2

在这里插入图片描述

输入:root = [1,2,3,4,5,6,7]
输出:[[4],[2],[1,5,6],[3],[7]]

解释
列 -2 :只有结点 4 在此列中。
列 -1 :只有结点 2 在此列中。
列 0 :结点 1 、5 和 6 都在此列中。
1 在上面,所以它出现在前面。
5 和 6 位置都是 (2, 0) ,所以按值从小到大排序,5 在 6 的前面。
列 1 :只有结点 3 在此列中。
列 2 :只有结点 7 在此列中。

示例 3

在这里插入图片描述

输入:root = [1,2,3,4,6,5,7]
输出:[[4],[2],[1,5,6],[3],[7]]

解释
这个示例实际上与示例 2 完全相同,只是结点 5 和 6 在树中的位置发生了交换。
因为 5 和 6 的位置仍然相同,所以答案保持不变,仍然按值从小到大排序。

提示

  • 树中结点数目总数在范围 [1, 1000] 内
  • 0 <= Node.val <= 1000

2.解题思路

从示例可以得出,最终答案是先按列号从小到大排列,列号相同再按行号从小到大,行号相同再按值从小到大输出。因而我们在遍历二叉树时需要统计各个节点(列号,行号,值)的三元组,然后按照列号、行号、值的升序排列,最后输出结果。

  • 定义一个map,key为节点,value存储该节点的列号,行号,值
  • 深度优先算法,遍历各个节点,记录各节点 列号、行号、值,保存至map中
  • 对map的values按照排序规则进行排序

复杂度

  • 时间复杂度:令总节点数量为 n,填充哈希表时进行树的遍历,复杂度为 O(n);构造答案时需要进行排序,复杂度为 O(nlog⁡n)。整体复杂度为 O(nlog⁡n)
  • 空间复杂度:O(n)

作者:宫水三叶
链接:https://leetcode.cn/problems/vertical-order-traversal-of-a-binary-tree/solutions/906335/gong-shui-san-xie-yi-ti-shuang-jie-dfs-h-wfm3/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

3.代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    //记录节点 列号、行号、值
    Map<TreeNode, int[]> map = new HashMap<>();
    public List<List<Integer>> verticalTraversal(TreeNode root) {
        //示例规则,先按列号从小到大排列,列号相同再按行号从小到大,行号相同再按值从小到大输出
        //定义一个map,key为节点,value存储该节点的 列号,行号,值
        //深度优先算法,遍历各个节点,记录各节点 列号、行号、值,保存至map中
        //对map的values按照排序规则进行排序
        
        //root - map
        map.put(root,new int[]{0,0,root.val});
        dfs(root);

        //各节点 遍历的信息列表
        List<int[]> list=new ArrayList<>(map.values());
        //排序
        Collections.sort(list, (a,b)->{
            //优先按列比较
            if(a[0]!=b[0]){
                return a[0]-b[0];
            }
            //其次 按行号比较
            if(a[1]!=b[1]){
                return a[1]-b[1];
            }
            //最后,按值比较
            return a[2]-b[2];
        });

        //遍历list,输出结果集
        List<List<Integer>> res=new ArrayList<>();
        List<Integer> tmp;
        for(int i=0;i<list.size();){
            int j=i;
            tmp=new ArrayList<>();
            //列号相同的
            while(j<list.size() && list.get(j)[0]==list.get(i)[0]){
                tmp.add(list.get(j)[2]);
                j++;
            }
            res.add(tmp);
            i=j;
        }
        return res;
    }

    private void dfs(TreeNode node){
        if(null==node){
            return;
        }
        int[] nodeColRowVal=map.get(node);
        int nodeCol=nodeColRowVal[0];
        int nodeRow=nodeColRowVal[1];
        int value=nodeColRowVal[2];

        //左子树
        if(null!=node.left){
            map.put(node.left, new int[]{nodeCol-1, nodeRow+1, node.left.val});
            dfs(node.left);
        }

        //右子树
        if(null!=node.right){
            map.put(node.right, new int[]{nodeCol+1, nodeRow+1, node.right.val});
            dfs(node.right);
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/452046.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

校招又临近了,怎么在面试中应对设计模式相关问题呢?

夏天开始了&#xff0c;那么夏天结束时的毕业季也不远了。毕业是个伤感、期待而又略带残酷的时节&#xff0c;就像蜜桃无论成熟与否都会在这个时间被采摘&#xff0c;如果毫无准备就踏入社会&#xff0c;就会……马上变成低级社畜。所以说还是要早点为了毕业找工作做点准备&…

Stereo-Detection:YOLO v5与双目测距结合,实现目标的识别和定位测距

简介&#xff1a;Stereo-Detection 是一个传统的SGBM深度测距yolov5目标检测&#xff0c;并部署在Jeston nano的开源教程。它致力于让更多的大四学生毕业&#xff0c;以及让研一学生入门 开源链接&#xff1a;yzfzzz/Stereo-Detection: Conventional SGBM depth ranging yolov…

【android专题】学习android,第一天学习:软件和组件了解

开发软件和手机建立连接 1.建立连接 2.运行App程序到手机&#xff0c;通过USB线 选择你的小米设备 run按钮 下面这个&#xff0c;就是你设备的日志 通过USB安装时&#xff0c;报错&#xff0c;大概意思就是&#xff0c;默认手机是禁止通过usb安装软件的&#xff0c; 要打开…

Automa自动化爬取图片(二)

Automa插件可以扩展Automa的功能&#xff0c;使其可以与其他应用程序进行交互。例如&#xff0c;Automa插件可以用于自动化测试Web应用程序&#xff0c;批量发送邮件&#xff0c;自动化填写表单等。通过Automa插件&#xff0c;我们可以更加灵活地定制自己的自动化测试工具&…

Linux 配置YUM源(FTP方式获取软件源、使用阿里云yum源、同时使用本地源与在线源)YUM获取安装包并生成YUM软件仓库

YUM介绍 YUM&#xff08;yellow dog updater modified&#xff09; 基于RPM包构建的软件更新机制 自动解决依赖关系 yum软件仓库集中管理软件包 RPM软件包的来源 centos发布的RPM包集合第三方组织发布的RPM包集合用户自定义的RPM包集合 软件仓库的提供方式 FTP服务&#xff1a;…

阿里4年测试经验分享 —— 测试外包干了3年后,我废了...

去年国庆&#xff0c;我分享了一次一位阿里朋友的技术生涯&#xff0c;大家反响爆蓬&#xff0c;感觉十分有意思&#xff0c;今天我来分享一下我另一位朋友的真实经历&#xff0c;是不是很想听&#xff1f; 没错&#xff0c;我这位朋友是曾经外包公司的测试开发&#xff0c;而…

SAPJNet:小样本多序列MRI诊断的序列自适应原型联合网络

文章目录 SAPJNet: Sequence-Adaptive Prototype-Joint Network for Small Sample Multi-sequence MRI Diagnosis摘要方法Sequence-Adaptive Transformer原型优化策略 实验结果 SAPJNet: Sequence-Adaptive Prototype-Joint Network for Small Sample Multi-sequence MRI Diagn…

【2023-4-8 美团春招笔试题 开发岗(技术综合-后端数开软开)】

题目一&#xff1a; 代码一&#xff1a; #include <iostream> #include <string> using namespace std;int main() {int n,m,a;cin>>n>>m>>a;string s[n][m];for(int i0;i<n;i){for(int j0;j<m;j){cin>>s[i][j];}}int count0;for(i…

【MySQL】(7)复合查询

文章目录 单表查询回顾与练习多表查询自连接多行子查询&#xff08;单列&#xff09;in 运算符all 关键字any 关键字 多列子查询from 子句中的子查询合并查询 单表查询回顾与练习 注&#xff1a;下面的依旧基于 scott 数据库 MariaDB [scott]> select * from emp; -------…

【历史上的今天】4 月 23 日:YouTube 上传第一个视频;数字音频播放器的发明者出生

整理 | 王启隆 透过「历史上的今天」&#xff0c;从过去看未来&#xff0c;从现在亦可以改变未来。 今天是 2023 年 4 月 23 日&#xff0c;世界读书日。在 1564 年的这一天&#xff0c;全世界最卓越的文学家之一莎士比亚出生&#xff1b;1616 年的这一天&#xff0c;莎士比亚…

ubuntu22.04普通用户配置cuda

ubuntu22.04普通用户配置cuda 1. 问题描述2. 解决方法2.1 查看安装cuda版本2.2 修改普通用户自己的环境变量2.3 重新执行初始化文档2.4 查看nvcc版本&#xff0c;测试是否成功 1. 问题描述 在ubuntu22.04服务器上使用root用户安装了cuda&#xff0c;普通用户登录时仍然没办法直…

中国社科院与美国杜兰大学金融管理硕士项目——你永远可以,成为想要的自己

有人说过&#xff0c;世界上最好的保鲜就是不断进步&#xff0c;每一次改变都是新生的开始&#xff0c;让自己成为更好的更值得爱的人。你要相信&#xff0c;不论任何时候&#xff0c;你都可以成为想要的自己。就像我们在职攻读硕士学位&#xff0c;经过在社科院与杜兰大学金融…

聚观早报|周鸿祎360员工不会被GPT淘汰;蚂蚁集团再捐1亿种树治沙

今日要闻&#xff1a;周鸿祎称360员工不会被GPT淘汰&#xff1b;特斯拉ModelS/X美国售价全系上涨&#xff1b;蚂蚁集团再捐1亿支持种树治沙&#xff1b;复旦大学MOSS大模型正式开源&#xff1b;电影《灌篮高手》票房突破2亿元 周鸿祎称360员工不会被GPT淘汰 4 月 21 日下午&am…

链表中的递归算法C语言带你看看

25. K 个一组翻转链表 难度困难1998收藏分享切换为英文接收动态反馈 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么…

Redis实现分布式锁的正确姿势 | Spring Cloud 36

一、分布式锁 1.1 什么是分布式锁 分布式锁&#xff0c;即分布式系统中的锁。在单体应用中我们通过锁解决的是控制共享资源访问的问题&#xff0c;而分布式锁&#xff0c;就是解决了分布式系统中控制共享资源访问的问题。与单体应用不同的是&#xff0c;分布式系统中竞争共享…

【网络安全】SSRF漏洞

ssfr ssrf产生的原因原理展示使用不当可能出现ssrf漏洞函数漏洞检测(靶场一)代码curl是什么检测服务器是否可以从其他服务器获取数据使用file协议获取远端服务器的内容利用dict协议探测端口 漏洞检测&#xff08;靶场二&#xff09;代码file_get_contents()利用file协议读取服务…

过来人(江苏)专转本考试后的感悟和经验,真的很受用

过来人转本考试后的感悟和经验&#xff0c;真的很受用&#xff01; 转本不仅是分数的较量&#xff0c;也是信息收集、时间管理、学习能力、毅力等等的较量。 同学们在转本中难免会遇见一些困难&#xff0c;为了避免走弯路&#xff0c;一起来看看过来人的感悟和经验吧&#xf…

Android音频使用webrtc降噪处理、回声消除

Android音频使用webrtc降噪处理、回声消除 介绍音频处理在Android应用中的重要性和应用场景 音频处理在Android应用中扮演着重要的角色&#xff0c;它能够改善用户体验&#xff0c;提升应用的功能性和吸引力。下面将介绍音频处理在Android应用中的广泛应用以及音频处理对用户体…

深度学习--基础(一)pytorch安装--cpu

在线安装 无GPU的时候&#xff0c;只能安装CPU版本&#xff0c;打开官网 https://pytorch.org/ 直接Pip安装即可 国内访问这些下载安装会出现超时的情况&#xff0c;可以-i指定国内安装源&#xff1a; pip3.11 install torch torchvision torchaudio -i https://pypi.tuna.ts…

【架构】微前端

文章目录 概述优劣优点缺点 微前端的整体架构微前端部署平台微前端运行时基于 SPA 的微前端架构 应用生命周期 方案qiankun 主应用qiankun微应用Vue 2 微应用 来源 概述 微前端不是单纯的前端框架或者工具&#xff0c;而是一套架构体系&#xff0c;这个概念最早在 2016 年底被…