57、Yolov8-seg实例分割部署MNN、OpenVINO、OAK,RK3588平台上

news2025/1/4 20:07:15

基本思想:部署yolov8-seg到mnn、openvino、oak平台上,仅仅做记录

实验模型:链接: https://pan.baidu.com/s/1ilX1YMuhONkisKuGuiqvWw?pwd=75ti 提取码: 75ti

一、是用官方模型转onnx首先,然后进行sim一下,是用模型日期2023-04-22,下载模型然后生成onnx和openvino模型

ubuntu@ubuntu:~$ git clone https://github.com/ultralytics/ultralytics.git
是用它生成onnx和openvino /home/ubuntu/ultralytics/tests/test_python.py

其中onnx我是用得optset=11,默认版本不确定能不能用,请自行尝试,大概率可以用,代码中是用了根据当前系统获取最新的onnx_optset版本

测试图片

转mnn模型

ubuntu@ubuntu:~/MNN/build$ ./MNNConvert -f ONNX --modelFile /home/ubuntu/ultralytics/yolov8n-seg_sim.onnx --MNNModel /home/ubuntu/ultralytics/yolov8n-seg_sim.mnn --bizCode MNN
The device support dot:0, support fp16:0, support i8mm: 0
Start to Convert Other Model Format To MNN Model...
[08:34:54] /home/ubuntu/MNN/tools/converter/source/onnx/onnxConverter.cpp:40: ONNX Model ir version: 6
Start to Optimize the MNN Net...
inputTensors : [ images, ]
outputTensors: [ output0, output1, ]
Converted Success!

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(SparseInstClion)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fopenmp ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp")
set(CMAKE_CXX_STANDARD 11)
include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/MNN)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库

add_library(libmnn SHARED IMPORTED)
set_target_properties(libmnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/libMNN.so)

add_executable(SparseInstClion main.cpp )
target_link_libraries(SparseInstClion ${OpenCV_LIBS}  libmnn )

main.cpp


#include<MNN/Interpreter.hpp>
#include<MNN/ImageProcess.hpp>


#include "opencv2/opencv.hpp"

#include <float.h>
#include <stdio.h>
#include <vector>

#define MAX_STRIDE 32 // if yolov8-p6 model modify to 64

using namespace std;
using namespace cv;
struct OutputSeg {
    int id;             //结果类别id
    float confidence;   //结果置信度
    cv::Rect box;       //矩形框
    cv::Mat boxMask;       //矩形框内mask,节省内存空间和加快速度
};

cv::Mat preprocess_img(cv::Mat &img, int input_w, int input_h, std::vector<int> &padsize) {
    int w, h, x, y;
    float r_w = input_w / (img.cols * 1.0);
    float r_h = input_h / (img.rows * 1.0);
    if (r_h > r_w) {//����ڸ�
        w = input_w;
        h = r_w * img.rows;
        x = 0;
        y = (input_h - h) / 2;
    } else {
        w = r_h * img.cols;
        h = input_h;
        x = (input_w - w) / 2;
        y = 0;
    }
    cv::Mat re(h, w, CV_8UC3);
    cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
    cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
    re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
    padsize.push_back(h);
    padsize.push_back(w);
    padsize.push_back(y);
    padsize.push_back(x);// int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];

    return out;
}


void DrawPred(Mat &img, std::vector<OutputSeg> result) {
    //生成随机颜色
    std::vector<Scalar> color;
    srand(time(0));
    for (int i = 0; i < 80; i++) {//CLASSES
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        color.push_back(Scalar(b, g, r));
    }
    Mat mask = img.clone();
    for (int i = 0; i < result.size(); i++) {
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num = i;
        rectangle(img, result[i].box, color[result[i].id], 2, 8);

        mask(result[i].box).setTo(color[result[i].id], result[i].boxMask);
        char label[100];
        sprintf(label, "%d:%.2f", result[i].id, result[i].confidence);

        //std::string label = std::to_string(result[i].id) + ":" + std::to_string(result[i].confidence);
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
    }

    addWeighted(img, 0.5, mask, 0.8, 1, img); //将mask加在原图上面


}

int main() {
    const char *imagepath = "../image/bus.jpg";

    cv::Mat bgr = cv::imread(imagepath);
    if (bgr.empty()) {
        fprintf(stderr, "cv::imread %s failed\n", imagepath);
        return -1;
    }
    cv::Mat src = bgr;
    int img_width = src.cols;
    int img_height = src.rows;
    std::cout << "宽高:" << img_width << " " << img_height << std::endl;
    // Subtract mean from image

    Mat pr_img0, pr_img;
    const int INPUT_H = 640;
    const int INPUT_W = 640;


    std::vector<int> padsize;
    pr_img = preprocess_img(src, INPUT_H, INPUT_W, padsize);       // Resize
    int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];
    float ratio_h = (float) src.rows / newh;
    float ratio_w = (float) src.cols / neww;


    const int _segWidth = 160;
    const int _segHeight = 160;
    const int _segChannels = 32;
    const int CLASSES = 80;
    const int Num_box = 8400;
    const float CONF_THRESHOLD = 0.1;
    const float NMS_THRESHOLD = 0.5;
    const float MASK_THRESHOLD = 0.5;
    const int OUTPUT_SIZE = Num_box * (CLASSES + 4 + _segChannels);//output0
    const int OUTPUT_SIZE1 = _segChannels * _segWidth * _segHeight;//output1
    float prob[OUTPUT_SIZE];
    float prob1[OUTPUT_SIZE1];
    // MNN inference
    auto mnnNet = std::shared_ptr<MNN::Interpreter>(
            MNN::Interpreter::createFromFile("/home/ubuntu/ultralytics/yolov8n-seg_sim.mnn"));
    auto t1 = std::chrono::steady_clock::now();
    MNN::ScheduleConfig netConfig;
    netConfig.type = MNN_FORWARD_CPU;
    netConfig.numThread = 4;

    auto session = mnnNet->createSession(netConfig);
    auto input = mnnNet->getSessionInput(session, nullptr);

    mnnNet->resizeTensor(input, {1, 3, (int) INPUT_H, (int) INPUT_W});
    mnnNet->resizeSession(session);
    MNN::CV::ImageProcess::Config config;

    const float mean_vals[3] = {0, 0, 0};

    const float norm_255[3] = {1.f / 255.f, 1.f / 255.f, 1.f / 255.f};

    std::shared_ptr<MNN::CV::ImageProcess> pretreat(
            MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3,
                                          norm_255, 3));

    pretreat->convert(pr_img.data, (int) INPUT_H, (int) INPUT_W, pr_img.step[0], input);


    mnnNet->runSession(session);

    auto SparseInst_scores = mnnNet->getSessionOutput(session, "output0");

    MNN::Tensor scoresHost(SparseInst_scores, SparseInst_scores->getDimensionType());
    SparseInst_scores->copyToHostTensor(&scoresHost);
//
//    std::vector<float> vec_host_scores;
    for (int i = 0; i < scoresHost.elementSize(); i++) {
        prob[i] = scoresHost.host<float>()[i];
    }
    auto t2 = std::chrono::steady_clock::now();

    //毫秒级
    double dr_ms = std::chrono::duration<double, std::milli>(t2 - t1).count();
    std::cout << dr_ms << " ms" << std::endl;
    std::vector<float> vec_scores;
    std::vector<float> vec_new_scores;
    std::vector<int> vec_labels;
    int scoresHost_shape_c = scoresHost.channel();
    int scoresHost_shape_d = scoresHost.dimensions();
    int scoresHost_shape_w = scoresHost.width();
    int scoresHost_shape_h = scoresHost.height();

    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d scoresHost.elementSize()=%d\n", scoresHost_shape_d,
           scoresHost_shape_c, scoresHost_shape_h, scoresHost_shape_w, scoresHost.elementSize());
    auto SparseInst_masks = mnnNet->getSessionOutput(session, "output1");

    MNN::Tensor masksHost(SparseInst_masks, SparseInst_masks->getDimensionType());
    SparseInst_masks->copyToHostTensor(&masksHost);
    for (int i = 0; i < masksHost.elementSize(); i++) {
        prob1[i] = masksHost.host<float>()[i];
    }

//    std::vector<float> vec_host_masks;
//    for (int i = 0; i < masksHost.elementSize(); i++) {
//        vec_host_masks.emplace_back(masksHost.host<float>()[i]);
//    }
    int masksHost_shape_c = masksHost.channel();
    int masksHost_shape_d = masksHost.dimensions();
    int masksHost_shape_w = masksHost.width();
    int masksHost_shape_h = masksHost.height();
    printf("shape_d=%d shape_c=%d shape_h=%d shape_w=%d masksHost.elementSize()=%d\n", masksHost_shape_d,
           masksHost_shape_c, masksHost_shape_h, masksHost_shape_w, masksHost.elementSize());

    //pretty_print(result1, prob1);

    std::vector<int> classIds;//结果id数组
    std::vector<float> confidences;//结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;//每个id矩形框
    std::vector<cv::Mat> picked_proposals;  //后续计算mask

    // 处理box
    int net_length = CLASSES + 4 + _segChannels;
    cv::Mat out1 = cv::Mat(net_length, Num_box, CV_32F, prob);

    auto start = std::chrono::system_clock::now();
    for (int i = 0; i < Num_box; i++) {
        //输出是1*net_length*Num_box;所以每个box的属性是每隔Num_box取一个值,共net_length个值
        cv::Mat scores = out1(Rect(i, 4, 1, CLASSES)).clone();
        Point classIdPoint;
        double max_class_socre;
        minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
        max_class_socre = (float) max_class_socre;
        if (max_class_socre >= CONF_THRESHOLD) {
            cv::Mat temp_proto = out1(Rect(i, 4 + CLASSES, 1, _segChannels)).clone();
            picked_proposals.push_back(temp_proto.t());
            float x = (out1.at<float>(0, i) - padw) * ratio_w;  //cx
            float y = (out1.at<float>(1, i) - padh) * ratio_h;  //cy
            float w = out1.at<float>(2, i) * ratio_w;  //w
            float h = out1.at<float>(3, i) * ratio_h;  //h
            int left = MAX((x - 0.5 * w), 0);
            int top = MAX((y - 0.5 * h), 0);
            int width = (int) w;
            int height = (int) h;
            if (width <= 0 || height <= 0) { continue; }

            classIds.push_back(classIdPoint.y);
            confidences.push_back(max_class_socre);
            boxes.push_back(Rect(left, top, width, height));
        }

    }
    //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
    std::vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, CONF_THRESHOLD, NMS_THRESHOLD, nms_result);
    std::vector<cv::Mat> temp_mask_proposals;
    std::vector<OutputSeg> output;
    Rect holeImgRect(0, 0, src.cols, src.rows);
    for (int i = 0; i < nms_result.size(); ++i) {
        int idx = nms_result[i];
        OutputSeg result;
        result.id = classIds[idx];
        result.confidence = confidences[idx];
        //printf("ORI %d %d %d %d\n", boxes[idx].x, boxes[idx].y, boxes[idx].width, boxes[idx].height);
        //printf("W %d %d %d %d\n", holeImgRect.x, holeImgRect.y, holeImgRect.width, holeImgRect.height);
        result.box = boxes[idx] & holeImgRect;
        //printf("%d %d %d %d\n", result.box.x, result.box.y, result.box.width, result.box.height);
        output.push_back(result);
        temp_mask_proposals.push_back(picked_proposals[idx]);
    }

    // 处理mask
    Mat maskProposals;
    for (int i = 0; i < temp_mask_proposals.size(); ++i)
        maskProposals.push_back(temp_mask_proposals[i]);
if(!maskProposals.empty()) {
    Mat protos = Mat(_segChannels, _segWidth * _segHeight, CV_32F, prob1);
    Mat matmulRes = (maskProposals * protos).t();//n*32 32*25600 A*B是以数学运算中矩阵相乘的方式实现的,要求A的列数等于B的行数时
    Mat masks = matmulRes.reshape(output.size(), {_segWidth, _segHeight});//n*160*160

    std::vector<Mat> maskChannels;
    cv::split(masks, maskChannels);
    Rect roi(int((float)padw / INPUT_W * _segWidth), int((float) padh / INPUT_H * _segHeight), int(
            _segWidth - padw / 2), int(_segHeight - padh / 2));
    for (int i = 0; i < output.size(); ++i) {
        Mat dest, mask;
        cv::exp(-maskChannels[i], dest);//sigmoid
        dest = 1.0 / (1.0 + dest);//160*160
        dest = dest(roi);
        resize(dest, mask, cv::Size(src.cols, src.rows), INTER_NEAREST);
        //crop----截取box中的mask作为该box对应的mask
        Rect temp_rect = output[i].box;
        mask = mask(temp_rect) > MASK_THRESHOLD;
        output[i].boxMask = mask;
    }
    auto end = std::chrono::system_clock::now();
    std::cout << "后处理时间:" << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms"
              << std::endl;

    DrawPred(src, output);
}
    cv::imshow("output", src);
    cv::imwrite("a.jpg",src);
    char c = cv::waitKey(0);
    return 0;
}


测试结果

二、转openvino测试

比较奇怪,是用官方转的openvino可能是版本太高,无法是用,我是用自己得转得onnx在本地转得openvino模型,测试官方得xml存在这个错误

/home/ubuntu/openvino/cmake-build-debug/untitled23
宽高:810 1080
terminate called after throwing an instance of 'InferenceEngine::GeneralError'
  what():  Unknown model format! Cannot find reader for model format: xml and read the model: /home/ubuntu/ultralytics/yolov8n-seg_openvino_model/yolov8n-seg.xml. Please check that reader library exists in your PATH.

Process finished with exit code 134 (interrupted by signal 6: SIGABRT)

然后参考我之前得博客配置环境

https://sxj731533730.blog.csdn.net/article/details/124772210

然后转openvino可用

ubuntu@ubuntu:/opt/intel/openvino_2021/deployment_tools/model_optimizer$ python3 mo.py --input_shape [1,3,640,640] --input_model /home/ubuntu/ultralytics/yolov8n-seg.onnx --data_type FP16 --output_dir=/home/ubuntu/ultralytics/
Model Optimizer arguments:
Common parameters:
	- Path to the Input Model: 	/home/ubuntu/ultralytics/yolov8n-seg.onnx
	- Path for generated IR: 	/home/ubuntu/ultralytics/
	- IR output name: 	yolov8n-seg
	- Log level: 	ERROR
	- Batch: 	Not specified, inherited from the model
	- Input layers: 	Not specified, inherited from the model
	- Output layers: 	Not specified, inherited from the model
	- Input shapes: 	[1,3,640,640]
	- Mean values: 	Not specified
	- Scale values: 	Not specified
	- Scale factor: 	Not specified
	- Precision of IR: 	FP16
	- Enable fusing: 	True
	- Enable grouped convolutions fusing: 	True
	- Move mean values to preprocess section: 	None
	- Reverse input channels: 	False
ONNX specific parameters:
	- Inference Engine found in: 	/opt/intel/openvino_2021/python/python3.8/openvino
Inference Engine version: 	2021.4.1-3926-14e67d86634-releases/2021/4
Model Optimizer version: 	2021.4.1-3926-14e67d86634-releases/2021/4
[ WARNING ]  
Detected not satisfied dependencies:
	numpy: installed: 1.23.4, required: < 1.20

Please install required versions of components or use install_prerequisites script
/opt/intel/openvino_2021.4.689/deployment_tools/model_optimizer/install_prerequisites/install_prerequisites_onnx.sh
Note that install_prerequisites scripts may install additional components.
/opt/intel/openvino_2021/deployment_tools/model_optimizer/extensions/front/onnx/parameter_ext.py:20: DeprecationWarning: `mapping.TENSOR_TYPE_TO_NP_TYPE` is now deprecated and will be removed in a future release.To silence this warning, please use `helper.tensor_dtype_to_np_dtype` instead.
  'data_type': TENSOR_TYPE_TO_NP_TYPE[t_type.elem_type]
/opt/intel/openvino_2021/deployment_tools/model_optimizer/extensions/analysis/boolean_input.py:13: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  nodes = graph.get_op_nodes(op='Parameter', data_type=np.bool)
/opt/intel/openvino_2021/deployment_tools/model_optimizer/mo/front/common/partial_infer/concat.py:36: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  mask = np.zeros_like(shape, dtype=np.bool)
[ WARNING ]  Const node '/model.10/Resize/Add_input_port_1/value323515685' returns shape values of 'float64' type but it must be integer or float32. During Elementwise type inference will attempt to cast to float32
[ WARNING ]  Const node '/model.13/Resize/Add_input_port_1/value326915688' returns shape values of 'float64' type but it must be integer or float32. During Elementwise type inference will attempt to cast to float32
[ WARNING ]  Changing Const node '/model.10/Resize/Add_input_port_1/value323516047' data type from float16 to <class 'numpy.float32'> for Elementwise operation
[ WARNING ]  Changing Const node '/model.13/Resize/Add_input_port_1/value326915795' data type from float16 to <class 'numpy.float32'> for Elementwise operation
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /home/ubuntu/ultralytics/yolov8n-seg.xml
[ SUCCESS ] BIN file: /home/ubuntu/ultralytics/yolov8n-seg.bin
[ SUCCESS ] Total execution time: 7.38 seconds. 
[ SUCCESS ] Memory consumed: 127 MB. 
It's been a while, check for a new version of Intel(R) Distribution of OpenVINO(TM) toolkit here https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html?cid=other&source=prod&campid=ww_2021_bu_IOTG_OpenVINO-2021-4-LTS&content=upg_all&medium=organic or on the GitHub*

cmakelists.txt

cmake_minimum_required(VERSION 3.4.1)
set(CMAKE_CXX_STANDARD 14)


project(untitled23)

find_package(OpenCV REQUIRED)
find_package(ngraph REQUIRED)
find_package(InferenceEngine REQUIRED)

include_directories(
        ${OpenCV_INCLUDE_DIRS}
        ${CMAKE_CURRENT_SOURCE_DIR}
        ${CMAKE_CURRENT_BINARY_DIR}
)

add_executable(untitled23 main.cpp)

target_link_libraries(
        untitled23
        ${InferenceEngine_LIBRARIES}
        ${NGRAPH_LIBRARIES}
        ${OpenCV_LIBS}
)

main.cpp


#include "opencv2/opencv.hpp"

#include <float.h>
#include <stdio.h>
#include <vector>

#include <opencv2/opencv.hpp>
#include <inference_engine.hpp>
#include <iostream>
#include <chrono>
#include <opencv2/dnn/dnn.hpp>
#include <cmath>
using namespace std;
using namespace cv;
using namespace InferenceEngine;


using namespace std;
using namespace cv;
struct OutputSeg {
    int id;             //结果类别id
    float confidence;   //结果置信度
    cv::Rect box;       //矩形框
    cv::Mat boxMask;       //矩形框内mask,节省内存空间和加快速度
};

cv::Mat preprocess_img(cv::Mat &img, int input_w, int input_h, std::vector<int> &padsize) {
    int w, h, x, y;
    float r_w = input_w / (img.cols * 1.0);
    float r_h = input_h / (img.rows * 1.0);
    if (r_h > r_w) {//����ڸ�
        w = input_w;
        h = r_w * img.rows;
        x = 0;
        y = (input_h - h) / 2;
    } else {
        w = r_h * img.cols;
        h = input_h;
        x = (input_w - w) / 2;
        y = 0;
    }
    cv::Mat re(h, w, CV_8UC3);
    cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
    cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
    re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
    padsize.push_back(h);
    padsize.push_back(w);
    padsize.push_back(y);
    padsize.push_back(x);// int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];

    return out;
}


void DrawPred(Mat &img, std::vector<OutputSeg> result) {
    //生成随机颜色
    std::vector<Scalar> color;
    srand(time(0));
    for (int i = 0; i < 80; i++) {//CLASSES
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        color.push_back(Scalar(b, g, r));
    }
    Mat mask = img.clone();
    for (int i = 0; i < result.size(); i++) {
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num = i;
        rectangle(img, result[i].box, color[result[i].id], 2, 8);

        mask(result[i].box).setTo(color[result[i].id], result[i].boxMask);
        char label[100];
        sprintf(label, "%d:%.2f", result[i].id, result[i].confidence);

        //std::string label = std::to_string(result[i].id) + ":" + std::to_string(result[i].confidence);
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
    }

    addWeighted(img, 0.5, mask, 0.8, 1, img); //将mask加在原图上面


}

int main() {
    const char *imagepath = "/home/ubuntu/ultralytics/ultralytics/assets/bus.jpg";

    cv::Mat bgr = cv::imread(imagepath);
    if (bgr.empty()) {
        fprintf(stderr, "cv::imread %s failed\n", imagepath);
        return -1;
    }
    cv::Mat src = bgr;
    int img_width = src.cols;
    int img_height = src.rows;
    std::cout << "宽高:" << img_width << " " << img_height << std::endl;
    // Subtract mean from image

    Mat pr_img0, pr_img;
    const int INPUT_H = 640;
    const int INPUT_W = 640;


    std::vector<int> padsize;
    pr_img = preprocess_img(src, INPUT_H, INPUT_W, padsize);       // Resize
    int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];
    float ratio_h = (float) src.rows / newh;
    float ratio_w = (float) src.cols / neww;


    const int _segWidth = 160;
    const int _segHeight = 160;
    const int _segChannels = 32;
    const int CLASSES = 80;
    const int Num_box = 8400;
    const float CONF_THRESHOLD = 0.1;
    const float NMS_THRESHOLD = 0.5;
    const float MASK_THRESHOLD = 0.5;
    const int OUTPUT_SIZE = Num_box * (CLASSES + 4 + _segChannels);//output0
    const int OUTPUT_SIZE1 = _segChannels * _segWidth * _segHeight;//output1
    float prob[OUTPUT_SIZE];
    float prob1[OUTPUT_SIZE1];
    //获取可执行网络

    string _xml_path = "/home/ubuntu/ultralytics/yolov8n-seg.xml";
    ExecutableNetwork _network;
    OutputsDataMap _outputinfo;
    //参数区

    double  _cof_threshold = 0.3;
    double  _nms_area_threshold = 0.5;
    Core ie;
    auto cnnNetwork = ie.ReadNetwork(_xml_path);
    //输入设置
    InputsDataMap inputInfo(cnnNetwork.getInputsInfo());
    InputInfo::Ptr& input = inputInfo.begin()->second;
    string _input_name = inputInfo.begin()->first;
    input->setPrecision(Precision::FP32);
    input->getInputData()->setLayout(Layout::NCHW);
    ICNNNetwork::InputShapes inputShapes = cnnNetwork.getInputShapes();
    SizeVector& inSizeVector = inputShapes.begin()->second;
    cnnNetwork.reshape(inputShapes);
    //输出设置
    _outputinfo = OutputsDataMap(cnnNetwork.getOutputsInfo());
    for (auto &output : _outputinfo) {
        output.second->setPrecision(Precision::FP32);
    }
    //获取可执行网络
    //_network =  ie.LoadNetwork(cnnNetwork, "GPU");
    _network =  ie.LoadNetwork(cnnNetwork, "CPU");


    //_network =  ie.LoadNetwork(cnnNetwork, "GPU");
    _network =  ie.LoadNetwork(cnnNetwork, "CPU");
    size_t img_size = INPUT_W*INPUT_W;

    // MNN inference
    InferRequest::Ptr infer_request = _network.CreateInferRequestPtr();
    Blob::Ptr frameBlob = infer_request->GetBlob(_input_name);
    InferenceEngine::LockedMemory<void> blobMapped = InferenceEngine::as<InferenceEngine::MemoryBlob>(frameBlob)->wmap();
    float* blob_data = blobMapped.as<float*>();
    //nchw
    for(size_t row =0;row<640;row++){
        for(size_t col=0;col<640;col++){
            for(size_t ch =0;ch<3;ch++){
                blob_data[img_size*ch + row*640 + col] = float(pr_img.at<Vec3b>(row,col)[ch])/255.0f;
            }
        }
    }
    //执行预测
    infer_request->Infer();

    for (auto &output : _outputinfo) {
        auto output_name = output.first;
        Blob::Ptr blob = infer_request->GetBlob(output_name);
        LockedMemory<const void> blobMapped = as<MemoryBlob>(blob)->rmap();
        const float *output_blob = blobMapped.as<float *>();
        if(strcmp(output_name.c_str(),"output0")==0){
            for(int i=0;i<OUTPUT_SIZE;i++)
            prob[i]=output_blob[i];
        }
        if(strcmp(output_name.c_str(),"output1")==0){
            for(int i=0;i<OUTPUT_SIZE1;i++)
                prob1[i]=output_blob[i];
        }
        std::cout<<output_name<<std::endl;
    }

    //pretty_print(result1, prob1);

    std::vector<int> classIds;//结果id数组
    std::vector<float> confidences;//结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;//每个id矩形框
    std::vector<cv::Mat> picked_proposals;  //后续计算mask

    // 处理box
    int net_length = CLASSES + 4 + _segChannels;
    cv::Mat out1 = cv::Mat(net_length, Num_box, CV_32F, prob);

    auto start = std::chrono::system_clock::now();
    for (int i = 0; i < Num_box; i++) {
        //输出是1*net_length*Num_box;所以每个box的属性是每隔Num_box取一个值,共net_length个值
        cv::Mat scores = out1(Rect(i, 4, 1, CLASSES)).clone();
        Point classIdPoint;
        double max_class_socre;
        minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
        max_class_socre = (float) max_class_socre;
        if (max_class_socre >= CONF_THRESHOLD) {
            cv::Mat temp_proto = out1(Rect(i, 4 + CLASSES, 1, _segChannels)).clone();
            picked_proposals.push_back(temp_proto.t());
            float x = (out1.at<float>(0, i) - padw) * ratio_w;  //cx
            float y = (out1.at<float>(1, i) - padh) * ratio_h;  //cy
            float w = out1.at<float>(2, i) * ratio_w;  //w
            float h = out1.at<float>(3, i) * ratio_h;  //h
            int left = MAX((x - 0.5 * w), 0);
            int top = MAX((y - 0.5 * h), 0);
            int width = (int) w;
            int height = (int) h;
            if (width <= 0 || height <= 0) { continue; }

            classIds.push_back(classIdPoint.y);
            confidences.push_back(max_class_socre);
            boxes.push_back(Rect(left, top, width, height));
        }

    }
    //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
    std::vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, CONF_THRESHOLD, NMS_THRESHOLD, nms_result);
    std::vector<cv::Mat> temp_mask_proposals;
    std::vector<OutputSeg> output;
    Rect holeImgRect(0, 0, src.cols, src.rows);
    for (int i = 0; i < nms_result.size(); ++i) {
        int idx = nms_result[i];
        OutputSeg result;
        result.id = classIds[idx];
        result.confidence = confidences[idx];
        //printf("ORI %d %d %d %d\n", boxes[idx].x, boxes[idx].y, boxes[idx].width, boxes[idx].height);
        //printf("W %d %d %d %d\n", holeImgRect.x, holeImgRect.y, holeImgRect.width, holeImgRect.height);
        result.box = boxes[idx] & holeImgRect;
        //printf("%d %d %d %d\n", result.box.x, result.box.y, result.box.width, result.box.height);
        output.push_back(result);
        temp_mask_proposals.push_back(picked_proposals[idx]);
    }

    // 处理mask
    Mat maskProposals;
    for (int i = 0; i < temp_mask_proposals.size(); ++i)
        maskProposals.push_back(temp_mask_proposals[i]);
if(!maskProposals.empty()) {
    Mat protos = Mat(_segChannels, _segWidth * _segHeight, CV_32F, prob1);
    Mat matmulRes = (maskProposals * protos).t();//n*32 32*25600 A*B是以数学运算中矩阵相乘的方式实现的,要求A的列数等于B的行数时
    Mat masks = matmulRes.reshape(output.size(), {_segWidth, _segHeight});//n*160*160

    std::vector<Mat> maskChannels;
    cv::split(masks, maskChannels);
    Rect roi(int((float)padw / INPUT_W * _segWidth), int((float) padh / INPUT_H * _segHeight), int(
            _segWidth - padw / 2), int(_segHeight - padh / 2));
    for (int i = 0; i < output.size(); ++i) {
        Mat dest, mask;
        cv::exp(-maskChannels[i], dest);//sigmoid
        dest = 1.0 / (1.0 + dest);//160*160
        dest = dest(roi);
        resize(dest, mask, cv::Size(src.cols, src.rows), INTER_NEAREST);
        //crop----截取box中的mask作为该box对应的mask
        Rect temp_rect = output[i].box;
        mask = mask(temp_rect) > MASK_THRESHOLD;
        output[i].boxMask = mask;
    }
    auto end = std::chrono::system_clock::now();
    std::cout << "后处理时间:" << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms"
              << std::endl;

    DrawPred(src, output);
}
    cv::imshow("output", src);
    cv::imwrite("a.jpg",src);
    char c = cv::waitKey(0);
    return 0;
}
 
 

clion测试结果

三、oak测试结果

ubuntu@ubuntu:~$ python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model /home/ubuntu/ultralytics/yolov8n-seg.onnx --output_dir /home/ubuntu/ultralytics/F16_OAK --input_shape [1,3,640,640] --data_type FP16 --scale_values [255.0,255.0,255.0] --mean_values [0,0,0]
ubuntu@ubuntu:/opt/intel/openvino_2021/deployment_tools/tools/compile_tool$ ./compile_tool -m /home/ubuntu/ultralytics/F16_OAK/yolov8n-seg.xml -ip U8 -d MYRIAD -VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4



ubuntu@ubuntu:/opt/intel/openvino_2021/deployment_tools/tools/compile_tool$ cp yolov8n-seg.blob /home/ubuntu/ultralytics/F16_OAK/

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled15)
set(CMAKE_CXX_STANDARD 11)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${CMAKE_SOURCE_DIR}/include)
include_directories(${CMAKE_SOURCE_DIR}/include/utility)
#链接Opencv库
find_package(depthai CONFIG REQUIRED)
add_executable(untitled15 main.cpp include/utility/utility.cpp)
target_link_libraries(untitled15 ${OpenCV_LIBS}  depthai::opencv )

main.cpp


#include <stdio.h>
#include <string>
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "utility.hpp"
#include <vector>
#include "depthai/depthai.hpp"
using namespace std;
using namespace std::chrono;
using namespace cv;


using namespace std;
using namespace cv;
struct OutputSeg {
    int id;             //结果类别id
    float confidence;   //结果置信度
    cv::Rect box;       //矩形框
    cv::Mat boxMask;       //矩形框内mask,节省内存空间和加快速度
};

cv::Mat preprocess_img(cv::Mat &img, int input_w, int input_h, std::vector<int> &padsize) {
    int w, h, x, y;
    float r_w = input_w / (img.cols * 1.0);
    float r_h = input_h / (img.rows * 1.0);
    if (r_h > r_w) {//����ڸ�
        w = input_w;
        h = r_w * img.rows;
        x = 0;
        y = (input_h - h) / 2;
    } else {
        w = r_h * img.cols;
        h = input_h;
        x = (input_w - w) / 2;
        y = 0;
    }
    cv::Mat re(h, w, CV_8UC3);
    cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
    cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
    re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
    padsize.push_back(h);
    padsize.push_back(w);
    padsize.push_back(y);
    padsize.push_back(x);// int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];

    return out;
}


void DrawPred(Mat &img, std::vector<OutputSeg> result) {
    //生成随机颜色
    std::vector<Scalar> color;
    srand(time(0));
    for (int i = 0; i < 80; i++) {//CLASSES
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        color.push_back(Scalar(b, g, r));
    }
    Mat mask = img.clone();
    for (int i = 0; i < result.size(); i++) {
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num = i;
        rectangle(img, result[i].box, color[result[i].id], 2, 8);

        mask(result[i].box).setTo(color[result[i].id], result[i].boxMask);
        char label[100];
        sprintf(label, "%d:%.2f", result[i].id, result[i].confidence);

        //std::string label = std::to_string(result[i].id) + ":" + std::to_string(result[i].confidence);
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
    }

    addWeighted(img, 0.5, mask, 0.8, 1, img); //将mask加在原图上面


}

int main(int argc, char **argv) {


    Mat pr_img0, pr_img;
    const int INPUT_H = 640;
    const int INPUT_W = 640;





    const int _segWidth = 160;
    const int _segHeight = 160;
    const int _segChannels = 32;
    const int CLASSES = 80;
    const int Num_box = 8400;
    const float CONF_THRESHOLD = 0.1;
    const float NMS_THRESHOLD = 0.5;
    const float MASK_THRESHOLD = 0.5;
    const int OUTPUT_SIZE = Num_box * (CLASSES + 4 + _segChannels);//output0
    const int OUTPUT_SIZE1 = _segChannels * _segWidth * _segHeight;//output1
    float prob[OUTPUT_SIZE];
    float prob1[OUTPUT_SIZE1];



    int target_width=640;
    int target_height=640;
    dai::Pipeline pipeline;
    //定义
    auto cam = pipeline.create<dai::node::ColorCamera>();
    cam->setBoardSocket(dai::CameraBoardSocket::RGB);
    cam->setResolution(dai::ColorCameraProperties::SensorResolution::THE_1080_P);
    cam->setFps(60);
    cam->setPreviewSize(target_height, target_width);  // NN input
    cam->setInterleaved(false);

    auto net = pipeline.create<dai::node::NeuralNetwork>();
    dai::OpenVINO::Blob blob("/home/ubuntu/ultralytics/F16_OAK/yolov8n-seg.blob");
    net->setBlob(blob);
    net->input.setBlocking(false);

    //基本熟练明白oak的函数使用了 
    cam->preview.link(net->input);



    //定义输出
    auto xlinkParserOut = pipeline.create<dai::node::XLinkOut>();
    xlinkParserOut->setStreamName("parseOut");
    auto xlinkoutOut = pipeline.create<dai::node::XLinkOut>();
    xlinkoutOut->setStreamName("out");

    auto xlinkoutpassthroughOut = pipeline.create<dai::node::XLinkOut>();

    xlinkoutpassthroughOut->setStreamName("passthrough");


    net->out.link(xlinkParserOut->input);

    net->passthrough.link(xlinkoutpassthroughOut->input);

    //结构推送相机
    dai::Device device(pipeline);
    //取帧显示
    auto outqueue = device.getOutputQueue("passthrough", 8, false);//maxsize 代表缓冲数据
    auto detqueue = device.getOutputQueue("parseOut", 8, false);//maxsize 代表缓冲数据
    int counter = 0;
    float fps = 0;
    auto startTime = steady_clock::now();

    while (true) {
        counter++;
        auto currentTime = steady_clock::now();
        auto elapsed = duration_cast<duration<float>>(currentTime - startTime);
        if (elapsed > seconds(1)) {
            fps = counter / elapsed.count();
            counter = 0;
            startTime = currentTime;
        }



        auto ImgFrame = outqueue->get<dai::ImgFrame>();
        auto src = ImgFrame->getCvFrame();


        std::vector<int> padsize;
        pr_img = preprocess_img(src, INPUT_H, INPUT_W, padsize);       // Resize
        int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];
        float ratio_h = (float) src.rows / newh;
        float ratio_w = (float) src.cols / neww;

        auto inNN = detqueue->get<dai::NNData>();
        if( inNN) {
            std::cout << "Output layer names: ";
            for(const auto& output_name : inNN->getAllLayerNames()) {
                std::cout << output_name << ", ";
                auto output_blob=inNN->getLayerFp16(output_name);
                if(strcmp(output_name.c_str(),"output0")==0){
                    for(int i=0;i<OUTPUT_SIZE;i++)
                        prob[i]=(float)output_blob[i];
                }
                if(strcmp(output_name.c_str(),"output1")==0){
                    for(int i=0;i<OUTPUT_SIZE1;i++)
                        prob1[i]=(float)output_blob[i];
                }

            }
           // printOutputLayersOnce = false;

        }

//pretty_print(result1, prob1);

        std::vector<int> classIds;//结果id数组
        std::vector<float> confidences;//结果每个id对应置信度数组
        std::vector<cv::Rect> boxes;//每个id矩形框
        std::vector<cv::Mat> picked_proposals;  //后续计算mask

        // 处理box
        int net_length = CLASSES + 4 + _segChannels;
        cv::Mat out1 = cv::Mat(net_length, Num_box, CV_32F, prob);

        auto start = std::chrono::system_clock::now();
        for (int i = 0; i < Num_box; i++) {
            //输出是1*net_length*Num_box;所以每个box的属性是每隔Num_box取一个值,共net_length个值
            cv::Mat scores = out1(Rect(i, 4, 1, CLASSES)).clone();
            Point classIdPoint;
            double max_class_socre;
            minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
            max_class_socre = (float) max_class_socre;
            if (max_class_socre >= CONF_THRESHOLD) {
                cv::Mat temp_proto = out1(Rect(i, 4 + CLASSES, 1, _segChannels)).clone();
                picked_proposals.push_back(temp_proto.t());
                float x = (out1.at<float>(0, i) - padw) * ratio_w;  //cx
                float y = (out1.at<float>(1, i) - padh) * ratio_h;  //cy
                float w = out1.at<float>(2, i) * ratio_w;  //w
                float h = out1.at<float>(3, i) * ratio_h;  //h
                int left = MAX((x - 0.5 * w), 0);
                int top = MAX((y - 0.5 * h), 0);
                int width = (int) w;
                int height = (int) h;
                if (width <= 0 || height <= 0) { continue; }

                classIds.push_back(classIdPoint.y);
                confidences.push_back(max_class_socre);
                boxes.push_back(Rect(left, top, width, height));
            }

        }
        //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
        std::vector<int> nms_result;
        cv::dnn::NMSBoxes(boxes, confidences, CONF_THRESHOLD, NMS_THRESHOLD, nms_result);
        std::vector<cv::Mat> temp_mask_proposals;
        std::vector<OutputSeg> output;
        Rect holeImgRect(0, 0, src.cols, src.rows);
        for (int i = 0; i < nms_result.size(); ++i) {
            int idx = nms_result[i];
            OutputSeg result;
            result.id = classIds[idx];
            result.confidence = confidences[idx];
            //printf("ORI %d %d %d %d\n", boxes[idx].x, boxes[idx].y, boxes[idx].width, boxes[idx].height);
            //printf("W %d %d %d %d\n", holeImgRect.x, holeImgRect.y, holeImgRect.width, holeImgRect.height);
            result.box = boxes[idx] & holeImgRect;
            //printf("%d %d %d %d\n", result.box.x, result.box.y, result.box.width, result.box.height);
            output.push_back(result);
            temp_mask_proposals.push_back(picked_proposals[idx]);
        }

        // 处理mask
        Mat maskProposals;
        for (int i = 0; i < temp_mask_proposals.size(); ++i)
            maskProposals.push_back(temp_mask_proposals[i]);
        if(!maskProposals.empty()) {
            Mat protos = Mat(_segChannels, _segWidth * _segHeight, CV_32F, prob1);
            Mat matmulRes = (maskProposals * protos).t();//n*32 32*25600 A*B是以数学运算中矩阵相乘的方式实现的,要求A的列数等于B的行数时
            Mat masks = matmulRes.reshape(output.size(), {_segWidth, _segHeight});//n*160*160

            std::vector<Mat> maskChannels;
            cv::split(masks, maskChannels);
            Rect roi(int((float)padw / INPUT_W * _segWidth), int((float) padh / INPUT_H * _segHeight), int(
                    _segWidth - padw / 2), int(_segHeight - padh / 2));
            for (int i = 0; i < output.size(); ++i) {
                Mat dest, mask;
                cv::exp(-maskChannels[i], dest);//sigmoid
                dest = 1.0 / (1.0 + dest);//160*160
                dest = dest(roi);
                resize(dest, mask, cv::Size(src.cols, src.rows), INTER_NEAREST);
                //crop----截取box中的mask作为该box对应的mask
                Rect temp_rect = output[i].box;
                mask = mask(temp_rect) > MASK_THRESHOLD;
                output[i].boxMask = mask;
            }
            auto end = std::chrono::system_clock::now();
            std::cout << "后处理时间:" << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms"
                      << std::endl;

            DrawPred(src, output);
        }
        std::stringstream fpsStr;
        fpsStr << "NN fps: " << std::fixed << std::setprecision(2) << fps;
        printf("fps %f\n",fps);
        cv::putText(src, fpsStr.str(), cv::Point(4, 22), cv::FONT_HERSHEY_TRIPLEX, 1,
                    cv::Scalar(0, 255, 0));

        cv::imshow("output", src);
        cv::imwrite("a.jpg",src);
        char c = cv::waitKey(1);


    }


    return 0;
}

测试结果

四、转rknn模型,(存在问题,待修复,是用百度云盘最新官方develop得分支)

from rknn.api import RKNN

ONNX_MODEL = '/home/ubuntu/ultralytics/yolov8n-seg.onnx'
RKNN_MODEL = '/home/ubuntu/ultralytics/yolov8n-seg.rknn'

if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> config model')
    rknn.config(mean_values=[[127.5, 127.5, 127.5]], std_values=[[127.5, 127.5, 127.5]],
                target_platform='rk3588',
                quantized_dtype='asymmetric_quantized-8', optimization_level=3)
    print('done')

    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model  failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='datasets.txt')  # ,pre_compile=True
    if ret != 0:
        print('Build pp_liteseg_stdc1_camvid_960x720_10k_model failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export RKNN model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export  failed!')
        exit(ret)
    print('done')

    rknn.release()

转模型

/home/ubuntu/anaconda3/envs/rknnpy363_2/bin/python /home/ubuntu/ultralytics/rk3588.py 
--> config model
done
--> Loading model
W __init__: rknn-toolkit2 version: 1.4.3b12+c2650923
W config: The quant_img_RGB2BGR of input 0 is set to True, which means that the RGB2BGR conversion will be done first
          when the quantized image is loaded (only valid for jpg/jpeg/png/bmp, npy will ignore this flag).
          Special note here, if quant_img_RGB2BGR is True and the quantized image is jpg/jpeg/png/bmp,
          the mean_values / std_values in the config corresponds the order of BGR.
Loading : 100%|████████████████████████████████████████████████| 164/164 [00:00<00:00, 51843.97it/s]
I base_optimize ...
done
--> Building model
I base_optimize done.

cmakelists.txt

cmake_minimum_required(VERSION 3.13)
project(3588_demo)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}  -lstdc++ ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}  -lstdc++")

include_directories(${CMAKE_SOURCE_DIR})
include_directories(${CMAKE_SOURCE_DIR}/include)
message(STATUS ${OpenCV_INCLUDE_DIRS})

#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
find_package(OpenCV REQUIRED)
#链接Opencv库
add_library(librknn_api SHARED IMPORTED)
set_target_properties(librknn_api PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/lib/librknn_api.so)


add_executable(3588_demo main.cpp)
target_link_libraries(3588_demo ${OpenCV_LIBS} librknn_api)

main.cpp

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <queue>
#include "rknn_api.h"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <chrono>
#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;
struct OutputSeg {
    int id;             //结果类别id
    float confidence;   //结果置信度
    cv::Rect box;       //矩形框
    cv::Mat boxMask;       //矩形框内mask,节省内存空间和加快速度
};

cv::Mat preprocess_img(cv::Mat &img, int input_w, int input_h, std::vector<int> &padsize) {
    int w, h, x, y;
    float r_w = input_w / (img.cols * 1.0);
    float r_h = input_h / (img.rows * 1.0);
    if (r_h > r_w) {//����ڸ�
        w = input_w;
        h = r_w * img.rows;
        x = 0;
        y = (input_h - h) / 2;
    } else {
        w = r_h * img.cols;
        h = input_h;
        x = (input_w - w) / 2;
        y = 0;
    }
    cv::Mat re(h, w, CV_8UC3);
    cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
    cv::Mat out(input_h, input_w, CV_8UC3, cv::Scalar(128, 128, 128));
    re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
    padsize.push_back(h);
    padsize.push_back(w);
    padsize.push_back(y);
    padsize.push_back(x);// int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];

    return out;
}


void DrawPred(Mat &img, std::vector<OutputSeg> result) {
    //生成随机颜色
    std::vector<Scalar> color;
    srand(time(0));
    for (int i = 0; i < 80; i++) {//CLASSES
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        color.push_back(Scalar(b, g, r));
    }
    Mat mask = img.clone();
    for (int i = 0; i < result.size(); i++) {
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num = i;
        rectangle(img, result[i].box, color[result[i].id], 2, 8);

        mask(result[i].box).setTo(color[result[i].id], result[i].boxMask);
        char label[100];
        sprintf(label, "%d:%.2f", result[i].id, result[i].confidence);

        //std::string label = std::to_string(result[i].id) + ":" + std::to_string(result[i].confidence);
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
    }

    addWeighted(img, 0.5, mask, 0.8, 1, img); //将mask加在原图上面


}

void printRKNNTensor(rknn_tensor_attr *attr) {
    printf("index=%d name=%s n_dims=%d dims=[%d %d %d %d] n_elems=%d size=%d "
           "fmt=%d type=%d qnt_type=%d fl=%d zp=%d scale=%f\n",
           attr->index, attr->name, attr->n_dims, attr->dims[3], attr->dims[2],
           attr->dims[1], attr->dims[0], attr->n_elems, attr->size, 0, attr->type,
           attr->qnt_type, attr->fl, attr->zp, attr->scale);
}

int main(int argc, char **argv) {

    const char *model_path = "../model/yolov8n-seg.rknn";
    const char *post_process_type = "fp";//fp
    const char *imagepath = "../bus.jpg";

    cv::Mat src = cv::imread(imagepath);

    int img_width = src.cols;
    int img_height = src.rows;
    std::cout << "宽高:" << img_width << " " << img_height << std::endl;
    // Subtract mean from image

    Mat pr_img0, pr_img;
    const int INPUT_H = 640;
    const int INPUT_W = 640;


    std::vector<int> padsize;
    pr_img = preprocess_img(src, INPUT_H, INPUT_W, padsize);       // Resize
    int newh = padsize[0], neww = padsize[1], padh = padsize[2], padw = padsize[3];
    float ratio_h = (float) src.rows / newh;
    float ratio_w = (float) src.cols / neww;


    const int _segWidth = 160;
    const int _segHeight = 160;
    const int _segChannels = 32;
    const int CLASSES = 80;
    const int Num_box = 8400;
    const float CONF_THRESHOLD = 0.1;
    const float NMS_THRESHOLD = 0.5;
    const float MASK_THRESHOLD = 0.5;
    const int OUTPUT_SIZE = Num_box * (CLASSES + 4 + _segChannels);//output0
    const int OUTPUT_SIZE1 = _segChannels * _segWidth * _segHeight;//output1
    float prob[OUTPUT_SIZE];
    float prob1[OUTPUT_SIZE1];


    // Load model
    FILE *fp = fopen(model_path, "rb");
    if (fp == NULL) {
        printf("fopen %s fail!\n", model_path);
        return -1;
    }
    fseek(fp, 0, SEEK_END);
    int model_len = ftell(fp);
    void *model = malloc(model_len);
    fseek(fp, 0, SEEK_SET);
    if (model_len != fread(model, 1, model_len, fp)) {
        printf("fread %s fail!\n", model_path);
        free(model);
        return -1;
    }


    rknn_context ctx = 0;

    int ret = rknn_init(&ctx, model, model_len, 0, 0);
    if (ret < 0) {
        printf("rknn_init fail! ret=%d\n", ret);
        return -1;
    }

    /* Query sdk version */
    rknn_sdk_version version;
    ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version,
                     sizeof(rknn_sdk_version));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("sdk version: %s driver version: %s\n", version.api_version,
           version.drv_version);


    /* Get input,output attr */
    rknn_input_output_num io_num;
    ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
    if (ret < 0) {
        printf("rknn_init error ret=%d\n", ret);
        return -1;
    }
    printf("model input num: %d, output num: %d\n", io_num.n_input,
           io_num.n_output);

    rknn_tensor_attr input_attrs[io_num.n_input];
    memset(input_attrs, 0, sizeof(input_attrs));
    for (int i = 0; i < io_num.n_input; i++) {
        input_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]),
                         sizeof(rknn_tensor_attr));
        if (ret < 0) {
            printf("rknn_init error ret=%d\n", ret);
            return -1;
        }
        printRKNNTensor(&(input_attrs[i]));
    }

    rknn_tensor_attr output_attrs[io_num.n_output];
    memset(output_attrs, 0, sizeof(output_attrs));
    for (int i = 0; i < io_num.n_output; i++) {
        output_attrs[i].index = i;
        ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]),
                         sizeof(rknn_tensor_attr));
        printRKNNTensor(&(output_attrs[i]));
    }

    int input_channel = 3;
    int input_width = 0;
    int input_height = 0;
    if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
        printf("model is NCHW input fmt\n");
        input_width = input_attrs[0].dims[0];
        input_height = input_attrs[0].dims[1];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    } else {
        printf("model is NHWC input fmt\n");
        input_width = input_attrs[0].dims[1];
        input_height = input_attrs[0].dims[2];
        printf("input_width=%d input_height=%d\n", input_width, input_height);
    }

    printf("model input height=%d, width=%d, channel=%d\n", input_height, input_width,
           input_channel);


/* Init input tensor */
    rknn_input inputs[1];
    memset(inputs, 0, sizeof(inputs));
    inputs[0].index = 0;
    inputs[0].buf = pr_img.data;
    inputs[0].type = RKNN_TENSOR_UINT8;
    inputs[0].size = input_width * input_height * input_channel;
    inputs[0].fmt = RKNN_TENSOR_NHWC;
    inputs[0].pass_through = 0;

    /* Init output tensor */
    rknn_output outputs[io_num.n_output];
    memset(outputs, 0, sizeof(outputs));
    for (int i = 0; i < io_num.n_output; i++) {
        if (strcmp(post_process_type, "fp") == 0) {
            outputs[i].want_float = 1;
        } else if (strcmp(post_process_type, "u8") == 0) {
            outputs[i].want_float = 0;
        }
    }
    printf("img.cols: %d, img.rows: %d\n", pr_img.cols, pr_img.rows);
    auto t1 = std::chrono::steady_clock::now();
    rknn_inputs_set(ctx, io_num.n_input, inputs);
    ret = rknn_run(ctx, NULL);
    if (ret < 0) {
        printf("ctx error ret=%d\n", ret);
        return -1;
    }
    ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
    if (ret < 0) {
        printf("outputs error ret=%d\n", ret);
        return -1;
    }



   memcpy(prob, (float *)outputs[0].buf,OUTPUT_SIZE);
    memcpy(prob1, (float *)outputs[1].buf,OUTPUT_SIZE1);





//毫秒级
    auto t2 = std::chrono::steady_clock::now();
    double dr_ms = std::chrono::duration<double, std::milli>(t2 - t1).count();
    printf("%lf ms\n", dr_ms);

    std::vector<int> classIds;//结果id数组
    std::vector<float> confidences;//结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;//每个id矩形框
    std::vector<cv::Mat> picked_proposals;  //后续计算mask

    // 处理box
    int net_length = CLASSES + 4 + _segChannels;
    cv::Mat out1 = cv::Mat(net_length, Num_box, CV_32F, prob);

    auto start = std::chrono::system_clock::now();
    for (int i = 0; i < Num_box; i++) {
        //输出是1*net_length*Num_box;所以每个box的属性是每隔Num_box取一个值,共net_length个值
        cv::Mat scores = out1(Rect(i, 4, 1, CLASSES)).clone();
        Point classIdPoint;
        double max_class_socre;
        minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
        max_class_socre = (float) max_class_socre;
        if (max_class_socre >= CONF_THRESHOLD) {
            cv::Mat temp_proto = out1(Rect(i, 4 + CLASSES, 1, _segChannels)).clone();
            picked_proposals.push_back(temp_proto.t());
            float x = (out1.at<float>(0, i) - padw) * ratio_w;  //cx
            float y = (out1.at<float>(1, i) - padh) * ratio_h;  //cy
            float w = out1.at<float>(2, i) * ratio_w;  //w
            float h = out1.at<float>(3, i) * ratio_h;  //h
            int left = MAX((x - 0.5 * w), 0);
            int top = MAX((y - 0.5 * h), 0);
            int width = (int) w;
            int height = (int) h;
            if (width <= 0 || height <= 0) { continue; }

            classIds.push_back(classIdPoint.y);
            confidences.push_back(max_class_socre);
            boxes.push_back(Rect(left, top, width, height));
        }

    }
    //执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
    std::vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, CONF_THRESHOLD, NMS_THRESHOLD, nms_result);
    std::vector<cv::Mat> temp_mask_proposals;
    std::vector<OutputSeg> output;
    Rect holeImgRect(0, 0, src.cols, src.rows);
    for (int i = 0; i < nms_result.size(); ++i) {
        int idx = nms_result[i];
        OutputSeg result;
        result.id = classIds[idx];
        result.confidence = confidences[idx];
        //printf("ORI %d %d %d %d\n", boxes[idx].x, boxes[idx].y, boxes[idx].width, boxes[idx].height);
        //printf("W %d %d %d %d\n", holeImgRect.x, holeImgRect.y, holeImgRect.width, holeImgRect.height);
        result.box = boxes[idx] & holeImgRect;
        //printf("%d %d %d %d\n", result.box.x, result.box.y, result.box.width, result.box.height);
        output.push_back(result);
        temp_mask_proposals.push_back(picked_proposals[idx]);
    }

    // 处理mask
    Mat maskProposals;
    for (int i = 0; i < temp_mask_proposals.size(); ++i)
        maskProposals.push_back(temp_mask_proposals[i]);
    if (!maskProposals.empty()) {
        Mat protos = Mat(_segChannels, _segWidth * _segHeight, CV_32F, prob1);
        Mat matmulRes = (maskProposals * protos).t();//n*32 32*25600 A*B是以数学运算中矩阵相乘的方式实现的,要求A的列数等于B的行数时
        Mat masks = matmulRes.reshape(output.size(), {_segWidth, _segHeight});//n*160*160

        std::vector<Mat> maskChannels;
        cv::split(masks, maskChannels);
        Rect roi(int((float)padw / INPUT_W * _segWidth), int((float) padh / INPUT_H * _segHeight), int(
                _segWidth - padw / 2), int(_segHeight - padh / 2));
        for (int i = 0; i < output.size(); ++i) {
            Mat dest, mask;
            cv::exp(-maskChannels[i], dest);//sigmoid
            dest = 1.0 / (1.0 + dest);//160*160
            dest = dest(roi);
            resize(dest, mask, cv::Size(src.cols, src.rows), INTER_NEAREST);
            //crop----截取box中的mask作为该box对应的mask
            Rect temp_rect = output[i].box;
            mask = mask(temp_rect) > MASK_THRESHOLD;
            output[i].boxMask = mask;
        }
        auto end = std::chrono::system_clock::now();
        std::cout << "后处理时间:" << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms"
                  << std::endl;

        DrawPred(src, output);
    }
    //cv::imshow("output", src);
    cv::imwrite("a.jpg", src);
    // char c = cv::waitKey(0);



    ret = rknn_outputs_release(ctx, io_num.n_output, outputs);

    if (ret < 0) {
        printf("rknn_query fail! ret=%d\n", ret);
        goto Error;
    }


    Error:
    if (ctx > 0)
        rknn_destroy(ctx);
    if (model)
        free(model);
    if (fp)
        fclose(fp);
    return 0;
}

测试结果,结果有问题,待修复

宽高:810 1080
sdk version: 1.4.3b10 (9c25c9f90@2023-04-14T03:43:27) driver version: 0.8.2
model input num: 1, output num: 2
index=0 name=images n_dims=4 dims=[3 640 640 1] n_elems=1228800 size=1228800 fmt=0 type=2 qnt_type=2 fl=0 zp=0 scale=0.003922
index=0 name=output0 n_dims=4 dims=[1 8400 116 1] n_elems=974400 size=974400 fmt=0 type=2 qnt_type=2 fl=0 zp=-127 scale=2.509845
index=1 name=output1 n_dims=4 dims=[160 160 32 1] n_elems=819200 size=819200 fmt=0 type=2 qnt_type=2 fl=0 zp=-113 scale=0.018982
model is NHWC input fmt
input_width=640 input_height=640
model input height=640, width=640, channel=3
img.cols: 640, img.rows: 640
53.870083 ms

Process finished with exit code 0

参考:

https://github.com/fish-kong/Yolov8-instance-seg-tensorrt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/448096.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从120s到2.5s,看看人家的MyBatis批量插入数据优化,那叫一个优雅

最近在压测一批接口&#xff0c;发现接口处理速度慢的有点超出预期&#xff0c;感觉很奇怪&#xff0c;后面定位发现是数据库批量保存这块很慢。 这个项目用的是 mybatis-plus&#xff0c;批量保存直接用的是 mybatis-plus 提供的 saveBatch。 我点进去看了下源码&#xff0c…

入职华为外包一个月后,我离职向“北上广深”流浪了...

这次来聊一个大家可能也比较关心的问题&#xff0c;那就是就业城市选择的问题。而谈到这个问题&#xff0c;就不可避免地会谈到一些关于&#xff1a;机会&#xff1f;技术氛围&#xff1f;跳槽&#xff1f;薪资水平&#xff1f;等等一系列问题。 正好&#xff0c;这也是大家所…

【react全家桶】react-router

本人大二学生一枚&#xff0c;热爱前端&#xff0c;欢迎来交流学习哦&#xff0c;一起来学习吧。 <专栏推荐> &#x1f525;&#xff1a;js专栏 &#x1f525;&#xff1a;vue专栏 &#x1f525;&#xff1a;react专栏 文章目录 11 【react-router】1.准备1.1 SPA1.2 …

搞懂分布式RPC开源框架-gRPC

搞懂分布式RPC开源框架-gRPC rpc解决了什么问题&#xff0c;与消息队列应用场景比较 rpc(远程调用方法):请求回应 socket网络问题 ------> 消除端到端交互问题 业务场景&#xff1a; rpc&#xff1a;同步地处理 消息队列&#xff1a;不紧迫的非必要的 异步解决问题 &#x…

【回眸】又是一年毕业季,怎么利用ChatGPT 4.0 优化毕业论文?

目录 【回眸】又是一年毕业季&#xff0c;怎么利用ChatGPT 4.0 优化毕业论文&#xff1f; 前言 ChatGPT4.0降重提示词&#xff08;3.5表现略逊色一些&#xff0c;不过也可以用这个来作为提示词&#xff09; 举个例子 降重前的原文 构思提示词 确定提问词 选用合适的翻译…

CloudCompare如何进行二次开发?

文章目录 0.引言1.界面设计2.功能实现3.结果展示 0.引言 CloudCompare源代码编译成功后&#xff0c;即可进行二次开发&#xff0c;可以通过修改源码或者制作插件&#xff08;插件开发详见&#xff1a;CloudCompare如何进行二次开发之插件开发&#xff1f;&#xff09;实现二次开…

SpringBoot配置文件(properties与yml详解)

目录 一&#xff0c;SpringBoot配置文件 1&#xff0c;配置文件的作用 2&#xff0c;配置文件的格式 二&#xff0c;properties 配置文件说明 1&#xff0c;properties 基本语法 2&#xff0c;读取配置文件 3&#xff0c;properties 的缺点 三&#xff0c;yml配置文件说…

掌握Linux指令和权限:一个入门教程

目录 一.Linux基本指令1.ls指令2.pwd指令3.cd指令4.touch指令5.mkair指令6.rmdir和rm指令 一.Linux基本指令 1.ls指令 语法格式:ls [选项][目录或者文件] 功能&#xff1a;对于目录&#xff0c;该命令列出该目录下的所有子目录与文件。对于文件&#xff0c;将列出文件名以及其…

Chrome扩展开发指南

前言 Chrome 扩展&#xff08;通常也叫插件&#xff09;也是软件程序&#xff0c;使用 Web&#xff08;HTML, CSS, and JavaScript&#xff09;技术栈开发。允许用户自定义 Chrome 浏览体验。开发者可以通过增加特效或功能来优化体验。例如&#xff1a;效率工具、信息聚合等等。…

数据结构考研版——KMP算法

一、 我们先看下面这个算法当比较到不匹配的时候 模式串后移一位&#xff0c;并且让比较指针回去&#xff0c;这就叫做指针的回溯&#xff0c;回溯就是造成这个简单算法效率比较低的原因 这种是朴素模式匹配算法&#xff0c;时间复杂度比较高 int index(Str str,Str substr…

MAVEN安装与配置

文章目录 一、安装MAVEN二、在IDEA中进行配置 一、安装MAVEN 打开MAVEN官网下载&#xff1a;https://maven.apache.org/download.cgi 选择这两个进行下载&#xff0c;然后直接解压缩到指定的安装目录即可。 配置环境变量 1&#xff09;MAVEN_HOME设置为maven的安装目录 2&…

指令段间及文件间参数调用过程(64位 Intel架构)

指令段间及文件间参数调用过程&#xff08;64位 Intel架构&#xff09; 文章目录 指令段间及文件间参数调用过程&#xff08;64位 Intel架构&#xff09;一. 指令段间的参数调用过程1.1 推论1.2 验证 二. 文件间的参数调用过程2.1 推论2.2 验证 三. 指令解释相关补充 一. 指令段…

基于html+css的图片展示24

准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…

docker安装rocketMQ

1、安装jkd1.8 docker pull java:8 或者 docker pull openjdk:8 查看已安装的镜像&#xff1a; docker images 运行jdk命令 docker run -d -it --name java-8 java:8 进入JDK 容器 docker exec -it java-8 /bin/bash 查看java版本&#xff0c;进入java-8容器后输入 &#x…

金融数字新型基础设施创新开放联合体今日成立

4月18日&#xff0c;“金融数字新型基础设施创新开放联合体”&#xff08;以下简称&#xff1a;联合体&#xff09;在上海成立。联合体由上海银行、复旦大学金融科技研究院、中电金信共同发起&#xff0c;首批成员单位汇聚产业链与供给侧的中坚力量&#xff1a;国泰君安证券、太…

基于 BaiduAI 的人脸检测系统(PyQt5图形化界面实现)

文章目录 写在前面的话总体结构学生端教师端教务处系统 总结 写在前面的话 前几天有个小伙伴私我会不会做关于人脸检测与识别的小项目&#xff0c;奈何我现在主要是学习研究NLP了&#xff0c;所以关于CV的很多东西也有点力不从心&#xff0c;突然想起来去年我的毕业设计就是做…

【Vue】学习笔记-内置指令/自定义指令

内置指令 自定义指令 内置指令v-text 指令v-html指令v-cloak指令v-once指令v-pre指令 自定义指令 内置指令 我们学过的指令&#xff1a; v-bind : 单向绑定解析表达式, 可简写为 :xxx v-model : 双向数据绑定 v-for : 遍历数组/对象/字符串 v-on : 绑定事件监听, 可简写为 v…

遍历思路与子问题思路:详解二叉树的基本操作

二叉树的结构定义&#xff1a; public class BinaryTree {//内部类 表示一个结点static class TreeNode {TreeNode left; //左子树TreeNode right; //右子树char value; //结点值TreeNode(char value) {this.value value;}}public TreeNode root; //根节点... } …

云原生时代下,应用全生命周期管理之道

引言 过去 10 年间&#xff0c;云计算已经从单一的 IT 服务演变成为新一代的软件架构范式&#xff0c;进而赋能企业管理和生产模式的创新。云计算也经历了从“资源上云”到“深度用云”的发展阶段。 在云原生时代&#xff0c;应用全生命周期管理之道成为企业关注的一个焦点。在…

蓝牙耳机什么品牌的音质好?300左右音质最好的蓝牙耳机推荐

随着蓝牙技术的发展&#xff0c;蓝牙耳机品牌也越来越多。要说什么品牌的音质好&#xff1f;首先还是要根据自己的预算出发。在此&#xff0c;我来给大家推荐几款300左右音质最好的蓝牙耳机&#xff0c;可以当个参考。 一、南卡小音舱Lite2蓝牙耳机 参考价&#xff1a;239 发…