ROS学习第十九节——TF静态坐标变换

news2024/11/19 16:29:42

1.坐标msg消息

订阅发布模型中数据载体 msg 是一个重要实现,首先需要了解一下,在坐标转换实现中常用的 msg:geometry_msgs/TransformStampedgeometry_msgs/PointStamped

前者用于传输坐标系相关位置信息,后者用于传输某个坐标系内坐标点的信息。在坐标变换中,频繁的需要使用到坐标系的相对关系以及坐标点信息。

1.1geometry_msgs/TransformStamped

命令行键入:rosmsg info geometry_msgs/TransformStamped

std_msgs/Header header                     #头信息
  uint32 seq                                #|-- 序列号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 坐标 ID
string child_frame_id                    #子坐标系的 id
geometry_msgs/Transform transform        #坐标信息
  geometry_msgs/Vector3 translation        #偏移量
    float64 x                                #|-- X 方向的偏移量
    float64 y                                #|-- Y 方向的偏移量
    float64 z                                #|-- Z 方向上的偏移量
  geometry_msgs/Quaternion rotation        #四元数
    float64 x                                
    float64 y                                
    float64 z                                
    float64 w

四元数用于表示坐标的相对姿态

1.2geometry_msgs/PointStamped

命令行键入:rosmsg info geometry_msgs/PointStamped

std_msgs/Header header                    #头
  uint32 seq                                #|-- 序号
  time stamp                                #|-- 时间戳
  string frame_id                            #|-- 所属坐标系的 id
geometry_msgs/Point point                #点坐标
  float64 x                                    #|-- x y z 坐标
  float64 y
  float64 z

另请参考:

  • geometry_msgs/TransformStamped Documentation

  • geometry_msgs/PointStamped Documentation

2 静态坐标变换

所谓静态坐标变换,是指两个坐标系之间的相对位置是固定的。

需求描述:

现有一机器人模型,核心构成包含主体与雷达,各对应一坐标系,坐标系的原点分别位于主体与雷达的物理中心,已知雷达原点相对于主体原点位移关系如下: x 0.2 y0.0 z0.5。当前雷达检测到一障碍物,在雷达坐标系中障碍物的坐标为 (2.0 3.0 5.0),请问,该障碍物相对于主体的坐标是多少?

结果演示:

2.1创建功能包

创建项目功能包依赖于 tf2、tf2_ros、tf2_geometry_msgs、roscpp rospy std_msgs geometry_msgs

2.2发布方

/* 
    静态坐标变换发布方:
        发布关于 laser 坐标系的位置信息 

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建静态坐标转换广播器
        4.创建坐标系信息
        5.广播器发布坐标系信息
        6.spin()
*/


// 1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/static_transform_broadcaster.h"
#include "geometry_msgs/TransformStamped.h"
#include "tf2/LinearMath/Quaternion.h"

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"static_brocast");
    // 3.创建静态坐标转换广播器
    tf2_ros::StaticTransformBroadcaster broadcaster;
    // 4.创建坐标系信息
    geometry_msgs::TransformStamped ts;
    //----设置头信息
    ts.header.seq = 100;
    ts.header.stamp = ros::Time::now();
    //相对坐标中被参考的那一个
    ts.header.frame_id = "base_link";
    //----设置子级坐标系
    ts.child_frame_id = "laser";
    //----设置子级相对于父级的偏移量
    ts.transform.translation.x = 0.2;
    ts.transform.translation.y = 0.0;
    ts.transform.translation.z = 0.5;
    //----设置四元数:将 欧拉角数据转换成四元数
    tf2::Quaternion qtn;//创建四元数对象
    //向该对象设置欧拉角,这个对象可以将欧拉角转化成四元数
    qtn.setRPY(0,0,0);//欧拉角的单位是弧度
    ts.transform.rotation.x = qtn.getX();
    ts.transform.rotation.y = qtn.getY();
    ts.transform.rotation.z = qtn.getZ();
    ts.transform.rotation.w = qtn.getW();
    // 5.广播器发布坐标系信息
    broadcaster.sendTransform(ts);
    ros::spin();
    return 0;
}

配置文件

运行效果

 2.3订阅方

/*  
    订阅坐标系信息,生成一个相对于 子级坐标系的坐标点数据,转换成父级坐标系中的坐标点

    实现流程:
        1.包含头文件
        2.初始化 ROS 节点
        3.创建 TF 订阅节点
        4.生成一个坐标点(相对于子级坐标系)
        5.转换坐标点(相对于父级坐标系)
        6.spin()
*/
//1.包含头文件
#include "ros/ros.h"
#include "tf2_ros/transform_listener.h"
#include "tf2_ros/buffer.h"
#include "geometry_msgs/PointStamped.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h" //注意: 调用 transform 必须包含该头文件

int main(int argc, char *argv[])
{
    setlocale(LC_ALL,"");
    // 2.初始化 ROS 节点
    ros::init(argc,argv,"tf_sub");
    ros::NodeHandle nh;
    // 3.创建 TF 订阅节点
    //创建一个buffer缓存
    tf2_ros::Buffer buffer;
    //再创建监听对象(监听对象可以将订阅的数据存入buffer)

    tf2_ros::TransformListener listener(buffer);

    // 4.生成一个坐标点(相对于子级坐标系)
    geometry_msgs::PointStamped point_laser;
    point_laser.header.frame_id = "laser";
    point_laser.header.stamp = ros::Time::now();
    point_laser.point.x = 1;
    point_laser.point.y = 2;
    point_laser.point.z = 7.3;

    ros::Duration(2).sleep();
    ros::Rate r(1);
    while (ros::ok())
    {

    // 5.转换坐标点(相对于父级坐标系)
        //新建一个坐标点,用于接收转换结果  
        //--------------使用 try 语句或休眠,否则可能由于缓存接收延迟而导致坐标转换失败------------------------
        try
        {
            geometry_msgs::PointStamped point_base;
            /*
            调用buffer的转换函数transform
            参数1:被转换的坐标点
            参数2:目标坐标系
            参数3:输出的坐标点

            调用时候必须包含头文件,tf2_geometry_msgs/tf2_geometry_msgs.h

            运行时存在的问题,说base_link不存在,
            原因:订阅数据是一个耗时操作,转换函数是坐标系的相对关系还没有订阅到,因此出现异常
            解决:方案一:订阅之前休眠两秒
                         方案二:进行异常处理
            
            */
            point_base = buffer.transform(point_laser,"base_link");
            ROS_INFO("转换后的数据:(%.2f,%.2f,%.2f),参考的坐标系是:%s",point_base.point.x,point_base.point.y,point_base.point.z,point_base.header.frame_id.c_str());

        }
        catch(const std::exception& e)
        {
            // std::cerr << e.what() << '\n';
            ROS_INFO("程序异常.....");
        }


        r.sleep();  
        ros::spinOnce();
    }


    return 0;
}

2.3可以借助于rviz显示坐标系

  • 新建窗口输入命令:rviz;
  • 在启动的 rviz 中设置Fixed Frame 为 base_link;
  • 点击左下的 add 按钮,在弹出的窗口中选择 TF 组件,即可显示坐标关系。

 2.4

当坐标系之间的相对位置固定时,那么所需参数也是固定的: 父系坐标名称、子级坐标系名称、x偏移量、y偏移量、z偏移量、x 翻滚角度、y俯仰角度、z偏航角度,实现逻辑相同,参数不同,那么 ROS 系统就已经封装好了专门的节点,使用方式如下:

rosrun tf2_ros static_transform_publisher x偏移量 y偏移量 z偏移量 z偏航角度 y俯仰角度 x翻滚角度 父级坐标系 子级坐标系

示例:rosrun tf2_ros static_transform_publisher 0.2 0 0.5 0 0 0 /baselink /laser

也建议使用该种方式直接实现静态坐标系相对信息发布。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/444670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

js面试题

在全局作用域下声明了一个变量 arr, 它的初始值是一个空数组 第二段代码&#xff0c;循环计数器变量i的初始值为0&#xff0c;循环条件是i的值小于2&#xff0c; 也就是说当i的值为0或者1时&#xff0c; 循环条件才能成立 才能够进入到循环体 当i的值为2时循环条件不成立&…

ConcurrentLinkedQueue

唯一一个使用cas实现的线程安全并发效率高的集合。 一、为什么叫松散队列&#xff1f; 链表是松散的&#xff0c;链表节点并不都是有效的&#xff0c;允许存在无效节点valnull&#xff0c;但是只有最后一个节点才能nextnull 为什么线程安全需要把链表做成松散的。就是因为入队…

蓝精灵协会 (The Smurfs‘ Society) 宣布与著名艺术家展开一系列的合作,打造传奇 PFP 系列

4 月 18 日&#xff0c;The Smurfs Society 将推出第一个由 Smurfs 品牌支持的官方 PFP 系列。该系列建立在链上游戏的基础之上&#xff0c;该游戏聚集了超过 85,000 名玩家&#xff0c;并在设计、创意和与著名艺术家的合作方面设立了新标准。 而最近&#xff0c;蓝精灵官方&am…

2023-04-21 学习记录--C/C++-实现升序降序(选择法)

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、选择法 —— 升序 ⭐️ &#xff08;一&#xff09;、思路 从左到右&#xff0c;除最后一个数 依次作为 “当前数” 与 其右…

STM32F4_模数转换器(ADC)详解

目录 1. ADC是什么 2. ADC主要特性 3. ADC框图 3.1 ADC开关控制 3.2 ADC时钟 3.3 通道选择 3.4 单次转换模式和连续转换模式 3.5 时序图 3.6 模拟看门狗 4 温度传感器 5. ADC中断 6. ADC初始化结构体 6.1 ADC相关实验配置 7. 相关寄存器 7.1 ADC控制寄存器&…

Deep Neural Network for YouTube Recommendation论文精读

这篇论文 Deep Neural Networks for YouTube Recommendations 是google的YouTube团队在推荐系统上DNN方面的尝试&#xff0c;发表在16年9月的RecSys会议。本文所介绍的YouTube的推荐系统主要包括Deep Candidate Generation model和Deep Ranking model两个部分&#xff1a;Deep …

AWS EC2使用过程总结

步骤1&#xff1a;开通AWS账号 需要一个邮箱、一个信用卡账号&#xff1b;有第一年的免费试用&#xff0c;EC2每个月免费试用750小时&#xff1b;注册完成后&#xff0c;得到实例管理平台&#xff1a; 步骤2&#xff1a;开通EC2实例 步骤3&#xff1a;开通网关和安全组&…

【Python小技巧】一步到位升级到pandas 2.0.0正式版

文章目录 前言一、Pandas是什么&#xff1f;二、Pandas 2.0.0的升级特性三、升级安装Pandas 2.0.0正式版总结 前言 工欲善其事必先利其器&#xff0c;大数据、AI时代&#xff0c;目前Python 最新版本是3.11 &#xff0c;而Pandas也刚刚完成大升级&#xff0c;进入 2.0.0时代。…

ChatGPT 中的人类反馈强化学习 (RLHF) 实战

目录 1 前言2 人类反馈强化学习 (RLHF)2.1 奖励模型 (RM)2.2 近端策略优化算法 (PPO) 3 总结4 参考 团队博客: CSDN AI小组 相关阅读 ChatGPT 简介大语言模型浅探一关于 ChatGPT 必看的 10 篇论文从 ELMo 到 ChatGPT&#xff1a;历数 NLP 近 5 年必看大模型 1 前言 在当今数字…

整型、浮点型与字符串相互转换(C/C++)

文章目录 1. 整型、浮点型 -> 字符串2. 字符串 -> 整型3.字符串 -> 浮点型 1. 整型、浮点型 -> 字符串 A. 函数原型&#xff1a;   B. 分析  通常整型转换一般都是准确的&#xff0c;但是浮点型进行转换的时候因为精度问题有效数字位可能会出现一些偏差.   C. …

pushmall推贴共享电商2023年4月计划

Pushmall推贴共享电商2023年4月计划 2023年 二月份优化完成 1、商圈套餐卡&#xff1a;商品、优惠券、活动优化&#xff1b; 2、会员预充值一卡通&#xff1a;指定商家会员卡充值优惠&#xff1b; 3、商家海报&#xff1a;店铺海报、商品海报、商圈卡海报优化。 4、首页重新布…

SpringBoot(5)整合缓存

Springboot整合缓存 缓存SpringBoot内置缓存整合Ehcache缓存数据淘汰策略整合Memcached缓存SpringBoot整合jetcache缓存纯远程方案纯本地方案本地远程方案方法缓存远程方案的数据同步数据报表 SpringBoot整合j2cache缓存 缓存 企业级应用主要作用是信息处理&#xff0c;当需要…

【STM32】基础知识 第六课 内核 架构

【STM32】基础知识 第六课 内核 & 架构 F1 系统架构F4 系统架构F7 系统架构H7 系统架构 F1 系统架构 4 个主动单元 4 个被动单元 主动单元被动单元Cortex M3 内核 DCode 总线 (D-Bus)内部 FLASHCortex M3 内核系统总线 (S-Bus)内部 SRAM通用 DMA1FSMC通用 DMA2AHB 到 AP…

PCA主成分分析 从零理解

一、PCA的目的 假设我们有一堆观测到的数据。 数据的格式是observation*feature&#xff0c;每一行是一个观测&#xff08;也就是图里的一个点&#xff09;&#xff0c;每一列是这个数据的某个特征&#xff08;即一个维度&#xff09;。 假设数据矩阵是A&#xff0c;有m个观测…

辉煌优配|刚刚!“中字头”再度爆发

今天早盘&#xff0c;A股全体持续震动收拾&#xff0c;上证50指数跌破2700点整数关口&#xff0c;沪深300亦失守4100点。 盘面上&#xff0c;国防军工、种业、中字头、电气设备等板块涨幅居前&#xff0c;前期抢手的人工智能、半导体、信创、软件服务等板块全线回调。北上资金净…

零售店铺管理系统有哪些作用?选择零售管理系统要注意这4大问题

零售店铺管理系统主要是帮助实体零售店提高销售效率、降低成本、提升服务质量和客户满意度。 对于零售店铺来说&#xff0c;选择一款合适的零售店铺管理系统&#xff0c;可以有效提高其管理效率和精准度&#xff0c;同时也有利于自家店铺在市场竞争中占据优势。 一、零售店铺管…

Keil系列教程02_新建基础软件工程

1写在前面 目前Keil的四款产品&#xff08;软件&#xff09;&#xff1a;MDK-ARM、C51、C251、C166&#xff0c;在用法上极为相似&#xff0c;包括本文讲述的新建软件工程。 本文以目前&#xff08;2018年10月&#xff09;最新Keil MDK-ARM V5.26、STM32F103标准外设库为例&am…

晨控CK-FR208-PN与西门子PLC工业Profinet协议通讯指南

晨控CK-FR208-PN是一款支持标准工业Profinet协议的多通道工业RFID读写器&#xff0c;读卡器工作频率为13.56MHZ&#xff0c;支持对I-CODE 2、I-CODE SLI等符合ISO15693国际标准协议格式标签的读写。 读卡器同时支持标准工业通讯协议Profinet&#xff0c;方便用户通集成到PLC等…

电子模块|外控集成 LED 光源 WS2812模块---软件驱动stm32版

电子模块|外控集成 LED 光源 WS2812模块---软件驱动stm32版 模块简介单线归零码通讯方式24bit 数据结构 stm32 驱动 模块简介 WS2812是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同&#xff0c;每个元件即为一个像素点。像素点内部包含了智…

CxImage学习使用1:环境搭建

目录 前言 一、CxImage相关介绍 二、编译源码 三、将CxImage使用到自己的工程中 前言 CxImage是一个可以用于MFC 的C图像处理类库类&#xff0c;它可以打开&#xff0c;保存&#xff0c;显示&#xff0c;转换各种常见格式的图像文件&#xff0c;比如BMP, JPEG, GIF, PNG, TI…