使用Spark的foreach算子及UDTF函数实现MySQL数据的一对多【Java】
背景
我们的数仓项目中遇到了这样一种场景,脱敏后内容大致如下:
col1 | col2 | time1 | time2 |
---|---|---|---|
a1 | b1 | 2022-01-01 00:00:00 | 2022-01-05 00:00:00 |
a2 | b2 | 2022-01-28 00:00:00 | 2022-02-03 00:00:00 |
a3 | b3 | 2022-02-20 00:00:00 | 2022-02-25 00:00:00 |
a4 | b4 | 2022-03-29 00:00:00 | 2022-04-02 00:00:00 |
表结构大概如下:
mysql> create database db_lzy;
Query OK, 1 row affected (0.00 sec)
mysql> use db_lzy;
Database changed
mysql> show tables;
Empty set (0.00 sec)
mysql> create table test_origin_20001128 (
-> col1 varchar(200),
-> col2 varchar(200),
-> time1 datetime,
-> time2 datetime
-> )
-> ;
Query OK, 0 rows affected (0.03 sec)
mysql> create table test_result_20001128 (
-> col1 varchar(200),
-> col2 varchar(200),
-> time3 varchar(200)
-> )
-> ;
Query OK, 0 rows affected (0.01 sec)
mysql>
运算后的结果应该长这样:
col1 | col2 | time3 |
---|---|---|
a1 | b1 | 2022-01-01 |
a1 | b1 | 2022-01-02 |
a1 | b1 | 2022-01-03 |
a1 | b1 | 2022-01-04 |
a1 | b1 | 2022-01-05 |
a2 | b2 | 2022-01-28 |
a2 | b2 | 2022-01-29 |
a2 | b2 | 2022-01-30 |
a2 | b2 | 2022-01-31 |
a2 | b2 | 2022-02-01 |
a2 | b2 | 2022-02-02 |
a2 | b2 | 2022-02-03 |
a3 | b3 | 2022-02-20 |
a3 | b3 | 2022-02-21 |
a3 | b3 | 2022-02-22 |
a3 | b3 | 2022-02-23 |
a3 | b3 | 2022-02-24 |
a3 | b3 | 2022-02-25 |
a4 | b4 | 2022-03-29 |
a4 | b4 | 2022-03-30 |
a4 | b4 | 2022-03-31 |
a4 | b4 | 2022-04-01 |
a4 | b4 | 2022-04-02 |
显然应该使用一个UDTF函数。考虑到数据库应该尽可能存数据,而非消耗大量资源去运算,笔者最先想到的就是使用Spark的foreach算子实现该需求。运算应该尽可能放在Java这一侧,当然数据量不大时,也可以不用Spark,直接JDBC迭代器遍历一遍就OK了。数据量大时,还是应该使用Spark这类分布式运算引擎。
数据准备
简单插一些数据来模拟。实际prod环境当然不止这点数据!!!
mysql> insert into test_origin_20001128 values('a1','b1','2022-01-01 00:00:00','2022-01-01 00:00:00');
Query OK, 1 row affected (0.07 sec)
mysql> insert into test_origin_20001128 values('a2','b2','2022-01-28 00:00:00','2022-02-03 00:00:00');
Query OK, 1 row affected (0.01 sec)
mysql> insert into test_origin_20001128 values('a3','b3','2022-02-20 00:00:00','2022-02-25 00:00:00');
Query OK, 1 row affected (0.00 sec)
mysql> insert into test_origin_20001128 values('a4','b4','2022-03-29 00:00:00','2022-04-02 00:00:00');
Query OK, 1 row affected (0.00 sec)
mysql> select * from test_origin_20001128;
+------+------+---------------------+---------------------+
| col1 | col2 | time1 | time2 |
+------+------+---------------------+---------------------+
| a1 | b1 | 2022-01-01 00:00:00 | 2022-01-01 00:00:00 |
| a2 | b2 | 2022-01-28 00:00:00 | 2022-02-03 00:00:00 |
| a3 | b3 | 2022-02-20 00:00:00 | 2022-02-25 00:00:00 |
| a4 | b4 | 2022-03-29 00:00:00 | 2022-04-02 00:00:00 |
+------+------+---------------------+---------------------+
4 rows in set (0.00 sec)
mysql>
Java代码
pom.xml
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<scala.version>2.12.12</scala.version>
<scala.binary.version>2.12</scala.binary.version>
<spark.version>3.3.0</spark.version>
<encoding>UTF-8</encoding>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- 添加spark依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- 可以使用Lombok的@注解-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.16.20</version>
</dependency>
<!-- MySQL驱动包-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.28</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/java</sourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>
<plugins>
<!-- 编译插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<!--<encoding>${project.build.sourceEncoding}</encoding>-->
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
<!-- 打jar包插件(会包含所有依赖) -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<!--
zip -d learn_spark.jar META-INF/*.RSA META-INF/*.DSA META-INF/*.SF -->
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<!-- 可以设置jar包的入口类(可选) -->
<!--<mainClass>com.aa.flink.StreamWordCount</mainClass>-->
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
Java
话不多说,直接上代码:
package com.zhiyong.day20221128;
import org.apache.spark.api.java.function.ForeachFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;
import java.util.LinkedList;
import java.util.Properties;
/**
* @program: zhiyong_study
* @description: 使用foreach模拟UDTF函数
* @author: zhiyong
* @create: 2022-11-28 19:27
**/
public class ForeachDemo {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().appName("使用foreach模拟UDTF函数")
.master("local[2]")
.getOrCreate();
String url = "jdbc:mysql://192.168.88.100:3306/db_lzy";
String table = "test_origin_20001128";
Properties prop = new Properties();
prop.put("driver", "com.mysql.cj.jdbc.Driver");
prop.put("user", "root");
prop.put("password", "123456");
prop.put("url", url);
prop.put("fetchSize", "1000");
Dataset<Row> df1 = spark.read().jdbc(url, table, prop);
df1.show(false);
String[] exp = new String[5];
exp[0] = "col1 as col1";
exp[1] = "col2 as col2";
exp[2] = "date_format(time1,'yyyy-MM-dd') as time1";
exp[3] = "date_format(time2,'yyyy-MM-dd') as time2";
exp[4] = "datediff(date_format(time2,'yyyy-MM-dd'),date_format(time1,'yyyy-MM-dd')) as offset";
df1 = df1.selectExpr(exp);
df1.show(false);
df1.foreach((ForeachFunction<Row>) row -> {
//生产环境应该用连接池
Class.forName("com.mysql.cj.jdbc.Driver");
Connection connection = DriverManager.getConnection(url, "root", "123456");
connection.setAutoCommit(false);
String col1 = row.get(0).toString();
String col2 = row.get(1).toString();
String time1 = row.get(2).toString();
int offset = Integer.parseInt(row.get(4).toString());
LinkedList<String> list = new LinkedList<>();
list.add(time1);
String sql = "insert into test_result_20001128 values(?,?,?)";
PreparedStatement prepareStatement = connection.prepareStatement(sql);
if (offset > 0) {
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
Calendar calendar = Calendar.getInstance();
Date date1 = simpleDateFormat.parse(time1);
calendar.setTime(date1);
for (;offset>0;offset--){
calendar.add(calendar.DATE, 1);
String parseTime = simpleDateFormat.format(calendar.getTime());
list.add(parseTime);
}
}
for (String time3 : list) {
prepareStatement.setString(1,col1);
prepareStatement.setString(2,col2);
prepareStatement.setString(3,time3);
prepareStatement.addBatch();
}
prepareStatement.executeBatch();
connection.commit();
if (null !=prepareStatement){
prepareStatement.close();
}
if (null!=connection){
connection.close();
}
});
spark.close();
}
}
性能当然是灰常好,毕竟也没几条数据。
效果
读取到的原始DataFrame
+----+----+-------------------+-------------------+
|col1|col2|time1 |time2 |
+----+----+-------------------+-------------------+
|a1 |b1 |2022-01-01 00:00:00|2022-01-05 00:00:00|
|a2 |b2 |2022-01-28 00:00:00|2022-02-03 00:00:00|
|a3 |b3 |2022-02-20 00:00:00|2022-02-25 00:00:00|
|a4 |b4 |2022-03-29 00:00:00|2022-04-02 00:00:00|
+----+----+-------------------+-------------------+
可以成功读取到数据。
运算后的简化时间
+----+----+----------+----------+------+
|col1|col2|time1 |time2 |offset|
+----+----+----------+----------+------+
|a1 |b1 |2022-01-01|2022-01-05|4 |
|a2 |b2 |2022-01-28|2022-02-03|6 |
|a3 |b3 |2022-02-20|2022-02-25|5 |
|a4 |b4 |2022-03-29|2022-04-02|4 |
+----+----+----------+----------+------+
结果表
mysql> select * from test_result_20001128;
+------+------+------------+
| col1 | col2 | time3 |
+------+------+------------+
| a1 | b1 | 2022-01-01 |
| a1 | b1 | 2022-01-02 |
| a1 | b1 | 2022-01-03 |
| a1 | b1 | 2022-01-04 |
| a1 | b1 | 2022-01-05 |
| a2 | b2 | 2022-01-28 |
| a2 | b2 | 2022-01-29 |
| a2 | b2 | 2022-01-30 |
| a2 | b2 | 2022-01-31 |
| a2 | b2 | 2022-02-01 |
| a2 | b2 | 2022-02-02 |
| a2 | b2 | 2022-02-03 |
| a3 | b3 | 2022-02-20 |
| a3 | b3 | 2022-02-21 |
| a3 | b3 | 2022-02-22 |
| a3 | b3 | 2022-02-23 |
| a3 | b3 | 2022-02-24 |
| a3 | b3 | 2022-02-25 |
| a4 | b4 | 2022-03-29 |
| a4 | b4 | 2022-03-30 |
| a4 | b4 | 2022-03-31 |
| a4 | b4 | 2022-04-01 |
| a4 | b4 | 2022-04-02 |
+------+------+------------+
23 rows in set (0.00 sec)
mysql>
结果当然是和预期一致。
纯SQL的做法
事实上,SQL Boy们当然是不会用Java或者Scala操作Spark的算子来搞这种骚操作。SQL能做的事情,Java一定是都能做。Java能做的事情,少数情况纯SQL方式,取点巧妙的方法也可以实现。
由于新字段的格式固定,且可以枚举遍历,撑死100年也不过5w条数据,即便是笛卡尔积也不会有啥异常严重的后果,更何况是只有几百、几千条的小体量。故可以采用如下方式,不会Java和Scala的SQL Boy们也容易领悟。
构建副表
create table test_another_20001128 (
time3 varchar(200)
)
;
建个简单的表。
预填充数据
insert into test_another_20001128 values('2022-01-01');
insert into test_another_20001128 values('2022-01-02');
insert into test_another_20001128 values('2022-01-03');
insert into test_another_20001128 values('2022-01-04');
insert into test_another_20001128 values('2022-01-05');
insert into test_another_20001128 values('2022-01-06');
insert into test_another_20001128 values('2022-01-07');
insert into test_another_20001128 values('2022-01-08');
insert into test_another_20001128 values('2022-01-09');
insert into test_another_20001128 values('2022-01-10');
insert into test_another_20001128 values('2022-01-11');
insert into test_another_20001128 values('2022-01-12');
insert into test_another_20001128 values('2022-01-13');
insert into test_another_20001128 values('2022-01-14');
insert into test_another_20001128 values('2022-01-15');
insert into test_another_20001128 values('2022-01-16');
insert into test_another_20001128 values('2022-01-17');
insert into test_another_20001128 values('2022-01-18');
insert into test_another_20001128 values('2022-01-19');
insert into test_another_20001128 values('2022-01-20');
insert into test_another_20001128 values('2022-01-21');
insert into test_another_20001128 values('2022-01-22');
insert into test_another_20001128 values('2022-01-23');
insert into test_another_20001128 values('2022-01-24');
insert into test_another_20001128 values('2022-01-25');
insert into test_another_20001128 values('2022-01-26');
insert into test_another_20001128 values('2022-01-27');
insert into test_another_20001128 values('2022-01-28');
insert into test_another_20001128 values('2022-01-29');
insert into test_another_20001128 values('2022-01-30');
insert into test_another_20001128 values('2022-01-31');
insert into test_another_20001128 values('2022-02-01');
insert into test_another_20001128 values('2022-02-02');
insert into test_another_20001128 values('2022-02-03');
insert into test_another_20001128 values('2022-02-04');
insert into test_another_20001128 values('2022-02-05');
insert into test_another_20001128 values('2022-02-06');
insert into test_another_20001128 values('2022-02-07');
insert into test_another_20001128 values('2022-02-08');
insert into test_another_20001128 values('2022-02-09');
insert into test_another_20001128 values('2022-02-10');
insert into test_another_20001128 values('2022-02-11');
insert into test_another_20001128 values('2022-02-12');
insert into test_another_20001128 values('2022-02-13');
insert into test_another_20001128 values('2022-02-14');
insert into test_another_20001128 values('2022-02-15');
insert into test_another_20001128 values('2022-02-16');
insert into test_another_20001128 values('2022-02-17');
insert into test_another_20001128 values('2022-02-18');
insert into test_another_20001128 values('2022-02-19');
insert into test_another_20001128 values('2022-02-20');
insert into test_another_20001128 values('2022-02-21');
insert into test_another_20001128 values('2022-02-22');
insert into test_another_20001128 values('2022-02-23');
insert into test_another_20001128 values('2022-02-24');
insert into test_another_20001128 values('2022-02-25');
insert into test_another_20001128 values('2022-02-26');
insert into test_another_20001128 values('2022-02-27');
insert into test_another_20001128 values('2022-02-28');
insert into test_another_20001128 values('2022-03-01');
insert into test_another_20001128 values('2022-03-02');
insert into test_another_20001128 values('2022-03-03');
insert into test_another_20001128 values('2022-03-04');
insert into test_another_20001128 values('2022-03-05');
insert into test_another_20001128 values('2022-03-06');
insert into test_another_20001128 values('2022-03-07');
insert into test_another_20001128 values('2022-03-08');
insert into test_another_20001128 values('2022-03-09');
insert into test_another_20001128 values('2022-03-10');
insert into test_another_20001128 values('2022-03-11');
insert into test_another_20001128 values('2022-03-12');
insert into test_another_20001128 values('2022-03-13');
insert into test_another_20001128 values('2022-03-14');
insert into test_another_20001128 values('2022-03-15');
insert into test_another_20001128 values('2022-03-16');
insert into test_another_20001128 values('2022-03-17');
insert into test_another_20001128 values('2022-03-18');
insert into test_another_20001128 values('2022-03-19');
insert into test_another_20001128 values('2022-03-20');
insert into test_another_20001128 values('2022-03-21');
insert into test_another_20001128 values('2022-03-22');
insert into test_another_20001128 values('2022-03-23');
insert into test_another_20001128 values('2022-03-24');
insert into test_another_20001128 values('2022-03-25');
insert into test_another_20001128 values('2022-03-26');
insert into test_another_20001128 values('2022-03-27');
insert into test_another_20001128 values('2022-03-28');
insert into test_another_20001128 values('2022-03-29');
insert into test_another_20001128 values('2022-03-30');
insert into test_another_20001128 values('2022-03-31');
insert into test_another_20001128 values('2022-04-01');
insert into test_another_20001128 values('2022-04-02');
insert into test_another_20001128 values('2022-04-03');
insert into test_another_20001128 values('2022-04-04');
insert into test_another_20001128 values('2022-04-05');
insert into test_another_20001128 values('2022-04-06');
insert into test_another_20001128 values('2022-04-07');
insert into test_another_20001128 values('2022-04-08');
insert into test_another_20001128 values('2022-04-09');
insert into test_another_20001128 values('2022-04-10');
insert into test_another_20001128 values('2022-04-11');
insert into test_another_20001128 values('2022-04-12');
insert into test_another_20001128 values('2022-04-13');
insert into test_another_20001128 values('2022-04-14');
insert into test_another_20001128 values('2022-04-15');
insert into test_another_20001128 values('2022-04-16');
insert into test_another_20001128 values('2022-04-17');
insert into test_another_20001128 values('2022-04-18');
insert into test_another_20001128 values('2022-04-19');
insert into test_another_20001128 values('2022-04-20');
insert into test_another_20001128 values('2022-04-21');
insert into test_another_20001128 values('2022-04-22');
insert into test_another_20001128 values('2022-04-23');
insert into test_another_20001128 values('2022-04-24');
insert into test_another_20001128 values('2022-04-25');
insert into test_another_20001128 values('2022-04-26');
insert into test_another_20001128 values('2022-04-27');
insert into test_another_20001128 values('2022-04-28');
insert into test_another_20001128 values('2022-04-29');
insert into test_another_20001128 values('2022-04-30');
预先把用得到的数据准备好。
构建笛卡尔积
mysql> truncate table test_result_20001128;
Query OK, 0 rows affected (0.01 sec)
mysql> select * from test_result_20001128;
Empty set (0.00 sec)
mysql> insert into test_result_20001128
-> select
-> t1.col1,
-> t1.col2,
-> t2.time3
-> from
-> test_origin_20001128 t1,
-> test_another_20001128 t2
-> where
-> t1.time1<=t2.time3
-> and t1.time2>=t2.time3
-> ;
Query OK, 23 rows affected (0.00 sec)
Records: 23 Duplicates: 0 Warnings: 0
mysql> select * from test_result_20001128;
+------+------+------------+
| col1 | col2 | time3 |
+------+------+------------+
| a1 | b1 | 2022-01-01 |
| a1 | b1 | 2022-01-02 |
| a1 | b1 | 2022-01-03 |
| a1 | b1 | 2022-01-04 |
| a1 | b1 | 2022-01-05 |
| a2 | b2 | 2022-01-28 |
| a2 | b2 | 2022-01-29 |
| a2 | b2 | 2022-01-30 |
| a2 | b2 | 2022-01-31 |
| a2 | b2 | 2022-02-01 |
| a2 | b2 | 2022-02-02 |
| a2 | b2 | 2022-02-03 |
| a3 | b3 | 2022-02-20 |
| a3 | b3 | 2022-02-21 |
| a3 | b3 | 2022-02-22 |
| a3 | b3 | 2022-02-23 |
| a3 | b3 | 2022-02-24 |
| a3 | b3 | 2022-02-25 |
| a4 | b4 | 2022-03-29 |
| a4 | b4 | 2022-03-30 |
| a4 | b4 | 2022-03-31 |
| a4 | b4 | 2022-04-01 |
| a4 | b4 | 2022-04-02 |
+------+------+------------+
23 rows in set (0.00 sec)
mysql>
显然结果是一致的。
RDBMS的自动类型转换做的相当到位,不用像Hive那样各种时间戳还需要显式地手动写SQL函数转换才能做比较运算。
UDTF
异常
必须要enableHiveSupport():
//必须enableHiveSupport()
String register = "create temporary function udtf_demo as 'com.zhiyong.day20221128.UdtfDemo'";
spark.sql(register);
String sql = "select col1,col2,udtf_demo(time1,time2) as time3 from tb_tmp1_day20221128";
spark.sql(sql).show(100,false);
否则在Spark3.3.0这种新版本会报错:
Exception in thread "main" org.apache.spark.sql.AnalysisException: No handler for UDAF 'com.zhiyong.day20221128.ZhiyongUdtfFunction'. Use sparkSession.udf.register(...) instead.; line 1 pos 17
at org.apache.spark.sql.errors.QueryCompilationErrors$.noHandlerForUDAFError(QueryCompilationErrors.scala:786)
at org.apache.spark.sql.internal.SparkUDFExpressionBuilder.makeExpression(BaseSessionStateBuilder.scala:416)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.$anonfun$makeFunctionBuilder$1(SessionCatalog.scala:1456)
at org.apache.spark.sql.catalyst.analysis.SimpleFunctionRegistryBase.lookupFunction(FunctionRegistry.scala:239)
at org.apache.spark.sql.catalyst.analysis.SimpleFunctionRegistryBase.lookupFunction$(FunctionRegistry.scala:233)
at org.apache.spark.sql.catalyst.analysis.SimpleFunctionRegistry.lookupFunction(FunctionRegistry.scala:305)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.$anonfun$resolveBuiltinOrTempFunctionInternal$1(SessionCatalog.scala:1613)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.lookupTempFuncWithViewContext(SessionCatalog.scala:1635)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.resolveBuiltinOrTempFunctionInternal(SessionCatalog.scala:1613)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.resolveBuiltinOrTempFunction(SessionCatalog.scala:1590)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveFunctions$$resolveBuiltinOrTempFunction(Analyzer.scala:2160)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$25$$anonfun$applyOrElse$103.$anonfun$applyOrElse$108(Analyzer.scala:2119)
at org.apache.spark.sql.catalyst.analysis.package$.withPosition(package.scala:60)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$25$$anonfun$applyOrElse$103.applyOrElse(Analyzer.scala:2119)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$25$$anonfun$applyOrElse$103.applyOrElse(Analyzer.scala:2093)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$3(TreeNode.scala:589)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1228)
at org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1227)
at org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:513)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:589)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$transformExpressionsDownWithPruning$1(QueryPlan.scala:159)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:200)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:200)
at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:211)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$3(QueryPlan.scala:216)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:285)
at scala.collection.immutable.List.foreach(List.scala:431)
at scala.collection.TraversableLike.map(TraversableLike.scala:285)
at scala.collection.TraversableLike.map$(TraversableLike.scala:278)
at scala.collection.immutable.List.map(List.scala:305)
at org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:216)
at org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:221)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:427)
at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:221)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDownWithPruning(QueryPlan.scala:159)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsWithPruning(QueryPlan.scala:130)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$25.applyOrElse(Analyzer.scala:2093)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$$anonfun$apply$25.applyOrElse(Analyzer.scala:2072)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$3(AnalysisHelper.scala:138)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.$anonfun$resolveOperatorsUpWithPruning$1(AnalysisHelper.scala:138)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:323)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning(AnalysisHelper.scala:134)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.resolveOperatorsUpWithPruning$(AnalysisHelper.scala:130)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUpWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$.apply(Analyzer.scala:2072)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveFunctions$.apply(Analyzer.scala:2068)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:211)
at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)
at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)
at scala.collection.immutable.List.foldLeft(List.scala:91)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:208)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:200)
at scala.collection.immutable.List.foreach(List.scala:431)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200)
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:227)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$execute$1(Analyzer.scala:223)
at org.apache.spark.sql.catalyst.analysis.AnalysisContext$.withNewAnalysisContext(Analyzer.scala:172)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:223)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:187)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:179)
at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:179)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:208)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:207)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:76)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:185)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:510)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:185)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:184)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:76)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:74)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:66)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:622)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:617)
at com.zhiyong.day20221128.UdtfDemo.main(UdtfDemo.java:63)
22/11/28 23:39:33 INFO SparkContext: Invoking stop() from shutdown hook
22/11/28 23:39:33 INFO SparkUI: Stopped Spark web UI at http://DESKTOP-VRV0NDO:4040
22/11/28 23:39:33 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
22/11/28 23:39:33 INFO MemoryStore: MemoryStore cleared
22/11/28 23:39:33 INFO BlockManager: BlockManager stopped
22/11/28 23:39:33 INFO BlockManagerMaster: BlockManagerMaster stopped
22/11/28 23:39:33 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
22/11/28 23:39:33 INFO SparkContext: Successfully stopped SparkContext
22/11/28 23:39:33 INFO ShutdownHookManager: Shutdown hook called
22/11/28 23:39:33 INFO ShutdownHookManager: Deleting directory C:\Users\zhiyong\AppData\Local\Temp\spark-6a9f7535-0ebd-4d9e-b04c-97edd5c96d31
Process finished with exit code 1
需要使用提示的函数来注册UDTF。但是实际上是Hive的Catalog没有启用,默认的SessionCatalog当然是有问题的,它并不能解析到Hive的方法。
UDTF的Java类
package com.zhiyong.day20221128;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
/**
* @program: zhiyong_study
* @description: UDTF实现类
* @author: zhiyong
* @create: 2022-11-28 23:24
**/
public class ZhiyongUdtfFunction extends GenericUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
ArrayList<String> name = new ArrayList<>();
ArrayList<ObjectInspector> oi = new ArrayList<>();
name.add("time");
oi.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
//return super.initialize(argOIs);
return ObjectInspectorFactory.getStandardStructObjectInspector(name,oi);
}
@Override
public void process(Object[] args) throws HiveException {
if (2!= args.length){
throw new UDFArgumentException("参数个数不对,需要2个,实际" + args.length + "个");
}
String time1 = args[0].toString();
forward(time1);
int offset = Integer.parseInt(args[1].toString());
if (offset > 0) {
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");
Calendar calendar = Calendar.getInstance();
Date date1 = null;
try {
date1 = simpleDateFormat.parse(time1);
} catch (ParseException e) {
e.printStackTrace();
}
//System.out.println("date1 = " + date1);//date1 = Tue Mar 29 00:00:00 CST 2022
calendar.setTime(date1);
for (;offset>0;offset--){
calendar.add(calendar.DATE, 1);
//System.out.println("time = " + time);
String parseTime = simpleDateFormat.format(calendar.getTime());
forward(parseTime);
}
}
}
@Override
public void close() throws HiveException {
}
}
这个本身就是继承了Hive的类,所以写法与Hive一致。
UDTF的测试Demo类
package com.zhiyong.day20221128;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.spark.sql.*;
import java.util.Properties;
/**
* @program: zhiyong_study
* @description: 使用UDTF函数打散数据
* @author: zhiyong
* @create: 2022-11-28 22:29
**/
public class UdtfDemo {
public static void main(String[] args) {
SparkSession spark = SparkSession.builder().appName("使用UDTF函数打散数据")
.master("local[2]")
.enableHiveSupport()
.getOrCreate();
String url = "jdbc:mysql://192.168.88.100:3306/db_lzy";
String table = "test_origin_20001128";
Properties prop = new Properties();
prop.put("driver", "com.mysql.cj.jdbc.Driver");
prop.put("user", "root");
prop.put("password", "123456");
prop.put("url", url);
prop.put("fetchSize", "1000");
Dataset<Row> df1 = spark.read().jdbc(url, table, prop);
df1.show(false);
String[] exp = new String[5];
exp[0] = "col1 as col1";
exp[1] = "col2 as col2";
exp[2] = "date_format(time1,'yyyy-MM-dd') as time1";
exp[3] = "date_format(time2,'yyyy-MM-dd') as time2";
exp[4] = "datediff(date_format(time2,'yyyy-MM-dd'),date_format(time1,'yyyy-MM-dd')) as offset";
df1 = df1.selectExpr(exp);
df1.show(false);
df1.registerTempTable("tb_tmp1_day20221128");
//必须enableHiveSupport()
String register = "create temporary function udtf_demo as 'com.zhiyong.day20221128.ZhiyongUdtfFunction'";
spark.sql(register);
//SQLContext sqlContext = spark.sqlContext();
//sqlContext.sql(register);
//HiveContext hiveContext = new HiveContext(spark);
//hiveContext.sql(register);
//UdtfDemo udtfDemo = new UdtfDemo();
//spark.udf().register("udtf_demo",udtfDemo, DataTypes.StringType);
String sql = "select col1,col2,udtf_demo(time1,offset) as time3 from tb_tmp1_day20221128";
Dataset<Row> df2 = spark.sql(sql);
df2.show(100,false);
df2.write().mode(SaveMode.Overwrite)
.format("jdbc")
.option("url", url)
.option("dbtable", "db_lzy.test_result_20001128")
.option("user", "root")
.option("password", "123456")
.save();
}
}
由于Spark本身不支持注册UDTF【只能注册UDAF、UDF】,所以需要使用Hive的Context来注册函数。
Spark和Hive虽然都是有SQL,但是Hive是用Calcite解析的,Spark是自己写的Catalyst,语法上有区别。例如此处Spark SQL可以直接这么使用UDTF,但是Hive一定要这样:
with temp1 as (
select
col1 as col1,
col2 as col2,
date_format(time1,'yyyy-MM-dd') as time1,
date_format(time2,'yyyy-MM-dd') as time2,
datediff(date_format(time2,'yyyy-MM-dd'),date_format(time1,'yyyy-MM-dd')) as offset
)
select
col1,
col2,
time3
from
tb_tmp1_day20221128 t1
lateral view udtf_demo(time1,offset) temp3 as time3
;
需要将新的打散列当一个临时表【类似笛卡尔积】来用。
效果展示
22/11/29 00:03:52 INFO CodeGenerator: Code generated in 20.7807 ms
22/11/29 00:03:52 INFO SparkContext: Starting job: show at UdtfDemo.java:64
22/11/29 00:03:52 INFO DAGScheduler: Got job 2 (show at UdtfDemo.java:64) with 1 output partitions
22/11/29 00:03:52 INFO DAGScheduler: Final stage: ResultStage 2 (show at UdtfDemo.java:64)
22/11/29 00:03:52 INFO DAGScheduler: Parents of final stage: List()
22/11/29 00:03:52 INFO DAGScheduler: Missing parents: List()
22/11/29 00:03:52 INFO DAGScheduler: Submitting ResultStage 2 (MapPartitionsRDD[9] at show at UdtfDemo.java:64), which has no missing parents
22/11/29 00:03:52 INFO SerializationUtilities: Serializing ZhiyongUdtfFunction using kryo
22/11/29 00:03:52 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 25.8 KiB, free 15.8 GiB)
22/11/29 00:03:52 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 12.5 KiB, free 15.8 GiB)
22/11/29 00:03:52 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on DESKTOP-VRV0NDO:50132 (size: 12.5 KiB, free: 15.8 GiB)
22/11/29 00:03:52 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1513
22/11/29 00:03:52 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 2 (MapPartitionsRDD[9] at show at UdtfDemo.java:64) (first 15 tasks are for partitions Vector(0))
22/11/29 00:03:52 INFO TaskSchedulerImpl: Adding task set 2.0 with 1 tasks resource profile 0
22/11/29 00:03:52 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 2) (DESKTOP-VRV0NDO, executor driver, partition 0, PROCESS_LOCAL, 4299 bytes) taskResourceAssignments Map()
22/11/29 00:03:52 INFO Executor: Running task 0.0 in stage 2.0 (TID 2)
22/11/29 00:03:52 INFO SerializationUtilities: Deserializing ZhiyongUdtfFunction using kryo
22/11/29 00:03:52 INFO CodeGenerator: Code generated in 10.9602 ms
22/11/29 00:03:52 INFO CodeGenerator: Code generated in 9.3454 ms
22/11/29 00:03:52 WARN StandardStructObjectInspector: Invalid type for struct class java.lang.String
22/11/29 00:03:52 WARN StandardStructObjectInspector: ignoring similar errors.
22/11/29 00:03:52 INFO JDBCRDD: closed connection
22/11/29 00:03:52 INFO Executor: Finished task 0.0 in stage 2.0 (TID 2). 1717 bytes result sent to driver
22/11/29 00:03:52 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 2) in 129 ms on DESKTOP-VRV0NDO (executor driver) (1/1)
22/11/29 00:03:52 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
22/11/29 00:03:52 INFO DAGScheduler: ResultStage 2 (show at UdtfDemo.java:64) finished in 0.388 s
22/11/29 00:03:52 INFO DAGScheduler: Job 2 is finished. Cancelling potential speculative or zombie tasks for this job
22/11/29 00:03:52 INFO TaskSchedulerImpl: Killing all running tasks in stage 2: Stage finished
22/11/29 00:03:52 INFO DAGScheduler: Job 2 finished: show at UdtfDemo.java:64, took 0.394444 s
22/11/29 00:03:52 INFO CodeGenerator: Code generated in 18.709 ms
+----+----+----------+
|col1|col2|time3 |
+----+----+----------+
| a1 |b1 |2022-01-01|
|a1 |b1 |2022-01-02|
|a1 |b1 |2022-01-03|
|a1 |b1 |2022-01-04|
|a1 |b1 |2022-01-05|
|a2 |b2 |2022-01-28|
|a2 |b2 |2022-01-29|
|a2 |b2 |2022-01-30|
|a2 |b2 |2022-01-31|
|a2 |b2 |2022-02-01|
|a2 |b2 |2022-02-02|
|a2 |b2 |2022-02-03|
|a3 |b3 |2022-02-20|
|a3 |b3 |2022-02-21|
|a3 |b3 |2022-02-22|
|a3 |b3 |2022-02-23|
|a3 |b3 |2022-02-24|
|a3 |b3 |2022-02-25|
|a4 |b4 |2022-03-29|
|a4 |b4 |2022-03-30|
|a4 |b4 |2022-03-31|
|a4 |b4 |2022-04-01|
|a4 |b4 |2022-04-02|
+----+----+----------+
22/11/29 00:03:52 INFO SparkContext: Invoking stop() from shutdown hook
22/11/29 00:03:52 INFO SparkUI: Stopped Spark web UI at http://DESKTOP-VRV0NDO:4040
22/11/29 00:03:52 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
22/11/29 00:03:52 INFO MemoryStore: MemoryStore cleared
22/11/29 00:03:52 INFO BlockManager: BlockManager stopped
22/11/29 00:03:52 INFO BlockManagerMaster: BlockManagerMaster stopped
22/11/29 00:03:52 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
22/11/29 00:03:52 INFO SparkContext: Successfully stopped SparkContext
22/11/29 00:03:52 INFO ShutdownHookManager: Shutdown hook called
22/11/29 00:03:52 INFO ShutdownHookManager: Deleting directory C:\Users\zhiyong\AppData\Local\Temp\spark-dd1ef2ab-0562-4e85-8f1c-f172a7bd07dd
Process finished with exit code 0
不管是UDTF还是foreach,由于算法相似,结果当然也是一致的。
尾言
Java总归还是比SQL强大太多了!!!只会写几句SQL的话,距离真正意义的大数据开发还有很长的路要走!!!
转载请注明出处:https://lizhiyong.blog.csdn.net/article/details/128090026