与堆和堆排序相关的问题

news2025/1/19 3:16:18

与堆和堆排序相关的问题

作者:Grey

原文地址:

博客园:与堆和堆排序相关的问题

CSDN:与堆和堆排序相关的问题

堆结构说明

堆结构就是用数组实现的完全二叉树结构,什么是完全二叉树?可以参考如下两篇博客:

使用二叉树的递归套路来解决的问题

快速求完全二叉树的节点个数

完全二叉树中如果每棵子树的最大值都在顶部就是大根堆;完全二叉树中如果每棵子树的最小值都在顶部就是小根堆。

Java 语言中的 java.util.PriorityQueue,就是堆结构。

因为是用用数组表示完全二叉树,所以有如下两个换算关系,也就是堆的两种表示情况:

情况一,如果使用数组 0 号位置,那么对于 i 位置来说,它的:

  • 左孩子下标:2 * i + 1

  • 右孩子下标: 2 * i + 2

  • 父节点下标: (i - 1)/ 2

情况二,如果不用数组 0 号位置,那么对于 i 位置来说,它的:

  • 左孩子下标:2 * i 即:i << 1

  • 右孩子下标:2 * i + 1 即:i << 1 | 1

  • 父节点下标:i / 2 即:i >> 1

如果是小根堆(下标从 0 开始),

对每个元素 A[i],都需要满足 A[i * 2 + 1] >= A[i]A[i * 2 + 2] >= A[i]

如果是小根堆(下标从 0 开始),

对每个元素 A[i],都需要满足 A[i * 2 + 1] <= A[i]A[i * 2 + 2] <= A[i]

大根堆同理。

堆的数据结构定义如下,以大根堆为例,以下是伪代码

  // 大根堆
  public static class MyMaxHeap {
    // 用于存堆的数据
    private int[] heap;
    // 堆最大容纳数据的数量
    private final int limit;
    // 堆当前的容量
    private int heapSize;
    
    // 堆初始化
    public MyMaxHeap(int limit) {
      heap = new int[limit];
      this.limit = limit;
      heapSize = 0;
    }
    // 判断堆是否为空
    public boolean isEmpty() {
      return heapSize == 0;
    }
    // 判断堆是否满
    public boolean isFull() {
      return heapSize == limit;
    }
    public void push(int value) {
      // TODO 入堆
      // 注意:入堆后,也要保持大根堆的状态
    }
    public int pop() {
      // TODO 最大值出堆
      // 注意:出堆后,也要保持大根堆的状态
    }
  }

由上述数据结构定义可知,核心方法就是 pushpop,在每次操作后,要动态调整堆结构,使之保持大根堆的结构。

要完成这两个操作,就需要利用到堆的两个基本操作:

一个是 HeapInsert,一个是 Heapify。

Heapify 操作

Heapify 就是堆化的过程,以小根堆为例,示例说明

假设原始数组为:{3,2,1,4,5},初始状态如下

image

首先从头结点 3 开始,先找到 3 的左右孩子中较小的一个进行交换,现在较小的是右孩子 1,交换后是如下情况

image

互换后,3 号结点已经没有左右孩子了,停止操作。

然后按顺序继续处理 2 结点,2 结点已经比左右孩子都小了,无需进行交换。

image

接下来是 4 结点和 5 结点,都没有左右孩子,就无需再做操作。

整个流程就是,每个结点(假设为 X )去找自己的左右孩子中较小的那个(加设为 Y),然后X 和 Y 交换位置,交换后,看 X 是否继续有孩子结点,往复这个过程,一直到整个二叉树遍历完成。

完整代码如下:

public class Solution {
  public static void heapify(int[] arr) {
    if (arr == null || arr.length <= 1) {
      return;
    }
    for (int i = arr.length - 1; i >= 0; i--) {
      heapify(arr, i, arr.length);
    }
  }
  private static void heapify(int[] arr, int i, int n) {
    int left = 2 * i + 1;
    while (left < n) {
      int min = left + 1 < n && arr[left + 1] < arr[left] ? left + 1 : left;
      if (arr[i] <= arr[min]) {
        break;
      }
      swap(arr, i, min);
      i = min;
      left = 2 * i + 1;
    }
  }

  private static void swap(int[] arr, int i, int j) {
    if (i != j) {
      arr[i] = arr[i] ^ arr[j];
      arr[j] = arr[i] ^ arr[j];
      arr[i] = arr[i] ^ arr[j];
    }
  }
}

测评链接:LintCode 130 · Heapify

HeapInsert 操作

整个过程如下,以小根堆为例,从数组最后一个元素 X 开始,一直找其父节点 A,如果X 比 A 小,X 就和 A 交换,然后来到父节点 A,继续往上找 A 的父节点 B,如果 A 比 B 小,则把 A 和 B 交换……一直找到某个结点的头结点不比这个结点大,这个节点就可以停止移动了。以一个示例说明

假设原始数组为:{3,2,1,4,5},初始状态如下

image

从最后一个元素 5 开始,5 的父节点是 2,正好满足,无需继续往上找父节点,然后继续找倒数第二个位置 4 的父节点,也比父节点 2 要大,所以 4 节点也不需要动。

image

接下来是 1 结点,其父结点是 3 结点,所以此时要把 3 和 1 交换,变成如下样子

image

然后是 2 结点,2 结点的父节点 是 1 ,无需交换,然后是 1 结点,头结点,停止遍历,整个过程完毕。

HeapInsert 操作的完整代码如下

    private void heapInsert(int[] arr, int i) {
      while (arr[i] > arr[(i - 1) / 2]) {
        // 一直网上找
        swap(arr, i, (i - 1) / 2);
        i = (i - 1) / 2;
      }
    }

无论是 HeapInsert 还是 Heapify,整个过程时间复杂度是 O(logN),N 是二叉树结点个数,其高度是 logN。

有了 Heapify 和 HeapInsert 两个过程,整个堆的 pop 操作和 push 操作都迎刃而解。

    public void push(int value) {
    // 堆满了,不能入堆
      if (heapSize == limit) {
        throw new RuntimeException("heap is full");
      }
      // 把最后一个位置填充上,然后往小做 heapInsert 操作
      heap[heapSize] = value;
      // value  heapSize
      heapInsert(heap, heapSize++);
    }

    public int pop() {
      // 弹出的值一定是头结点
      int ans = heap[0];
      // 头结点弹出后,直接放到最后一个位置,然后往上做 heapify
      // 由于 heapSize 来标识堆的大小,heapSize--,就等于把头结点删掉了。
      swap(heap, 0, --heapSize);
      heapify(heap, 0, heapSize);
      return ans;
    }

堆排序

了解了 HeapInsert 和 Heapify 过程,堆排序过程,也就是利用了这两个方法,流程如下

第一步:先让整个数组都变成大根堆结构,建立堆的过程:

如果使用从上到下的方法,时间复杂度为O(N*logN)

如果使用从下到上的方法,时间复杂度为O(N)

第二步:把堆的最大值和堆末尾的值交换,然后减少堆的大小之后,再去调整堆,一直周而复始,时间复杂度为O(N*logN)

第三步:把堆的大小减小成0之后,排序完成。

堆排序额外空间复杂度O(1)

堆排序完整代码如下

import java.util.Arrays;
import java.util.PriorityQueue;

public class Code_HeapSort {

  public static void heapSort(int[] arr) {
    if (arr == null || arr.length < 2) {
      return;
    }
    // O(N*logN)
    //  for (int i = 0; i < arr.length; i++) { // O(N)
    //   heapInsert(arr, i); // O(logN)
    //  }
    // O(N)
    for (int i = arr.length - 1; i >= 0; i--) {
      heapify(arr, i, arr.length);
    }
    int heapSize = arr.length;
    swap(arr, 0, --heapSize);
    // O(N*logN)
    while (heapSize > 0) { // O(N)
      heapify(arr, 0, heapSize); // O(logN)
      swap(arr, 0, --heapSize); // O(1)
    }
  }

  // arr[index]刚来的数,往上
  public static void heapInsert(int[] arr, int index) {
    while (arr[index] > arr[(index - 1) / 2]) {
      swap(arr, index, (index - 1) / 2);
      index = (index - 1) / 2;
    }
  }

  // arr[index]位置的数,能否往下移动
  public static void heapify(int[] arr, int index, int heapSize) {
    int left = index * 2 + 1;
    while (left < heapSize) {
      int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
      largest = arr[largest] > arr[index] ? largest : index;
      if (largest == index) {
        break;
      }
      swap(arr, largest, index);
      index = largest;
      left = index * 2 + 1;
    }
  }

  public static void swap(int[] arr, int i, int j) {
    int tmp = arr[i];
    arr[i] = arr[j];
    arr[j] = tmp;
  }
}

与堆排序相关的一个问题

题目描述

已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离一定不超过k,并且k相对于数组长度来说是比较小的,请选择一个合适的排序策略,对这个数组进行排序。(从小到大)

本题的主要思路就是利用堆排序:

先把 k 个数进堆,然后再加入一个,弹出一个(加入和弹出过程一定不会超过 k 次),最后堆里面剩下的继续弹出即可。

时间复杂度是O(N*logK)

完整代码如下(含对数程序)

import java.util.Arrays;
import java.util.PriorityQueue;

public class Code_DistanceLessK {
  public static void sortedArrDistanceLessK(int[] arr, int k) {
    k = Math.min(arr.length - 1, k);
    PriorityQueue<Integer> heap = new PriorityQueue<>();
    int i = 0;
    for (; i < k + 1; i++) {
      heap.offer(arr[i]);
    }
    int index = 0;
    for (; i < arr.length; i++) {
      heap.offer(arr[i]);
      arr[index++] = heap.poll();
    }
    while (!heap.isEmpty()) {
      arr[index++] = heap.poll();
    }
  }

  // for test
  public static void comparator(int[] arr, int k) {
    Arrays.sort(arr);
  }

  // for test
  public static int[] randomArrayNoMoveMoreK(int maxSize, int maxValue, int K) {
    int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
    for (int i = 0; i < arr.length; i++) {
      arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
    }
    // 先排个序
    Arrays.sort(arr);
    // 然后开始随意交换,但是保证每个数距离不超过K
    // swap[i] == true, 表示i位置已经参与过交换
    // swap[i] == false, 表示i位置没有参与过交换
    boolean[] isSwap = new boolean[arr.length];
    for (int i = 0; i < arr.length; i++) {
      int j = Math.min(i + (int) (Math.random() * (K + 1)), arr.length - 1);
      if (!isSwap[i] && !isSwap[j]) {
        isSwap[i] = true;
        isSwap[j] = true;
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
      }
    }
    return arr;
  }

  // for test
  public static int[] copyArray(int[] arr) {
    if (arr == null) {
      return null;
    }
    int[] res = new int[arr.length];
    for (int i = 0; i < arr.length; i++) {
      res[i] = arr[i];
    }
    return res;
  }

  // for test
  public static boolean isEqual(int[] arr1, int[] arr2) {
    if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
      return false;
    }
    if (arr1 == null) {
      return true;
    }
    if (arr1.length != arr2.length) {
      return false;
    }
    for (int i = 0; i < arr1.length; i++) {
      if (arr1[i] != arr2[i]) {
        return false;
      }
    }
    return true;
  }

  // for test
  public static void printArray(int[] arr) {
    if (arr == null) {
      return;
    }
    for (int j : arr) {
      System.out.print(j + " ");
    }
    System.out.println();
  }

  // for test
  public static void main(String[] args) {
    System.out.println("test begin");
    int testTime = 500000;
    int maxSize = 100;
    int maxValue = 100;
    boolean succeed = true;
    for (int i = 0; i < testTime; i++) {
      int k = (int) (Math.random() * maxSize) + 1;
      int[] arr = randomArrayNoMoveMoreK(maxSize, maxValue, k);
      int[] arr1 = copyArray(arr);
      int[] arr2 = copyArray(arr);
      sortedArrDistanceLessK(arr1, k);
      comparator(arr2, k);
      if (!isEqual(arr1, arr2)) {
        succeed = false;
        System.out.println("K : " + k);
        printArray(arr);
        printArray(arr1);
        printArray(arr2);
        break;
      }
    }
    System.out.println(succeed ? "Nice!" : "Fucking fucked!");
  }
}

更多

算法和数据结构笔记

参考资料

算法和数据结构体系班-左程云

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/44349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

向善的力量:顺丰,如何在不确定性中寻求确定性

眼下新冠病毒来势汹汹&#xff0c;广大民众生活受到巨大影响。虽然物流企业也受到巨大影响&#xff0c;但面对严峻形势&#xff0c;众多物流企业依然在为保障民生献出自己的一份力量&#xff0c;在当下最大的不确定性中努力寻求确定性。 特别是在最近&#xff0c;常常看到各类…

拿捏Fiddler抓包教程(10)-Fiddler如何设置捕获Firefox浏览器的Https会话

1.简介 经过上一篇对Fiddler的配置后&#xff0c;绝大多数的Https的会话&#xff0c;我们可以成功捕获抓取到&#xff0c;但是有些版本的Firefox浏览器仍然是捕获不到其的Https会话&#xff0c;需要我们更进一步的配置才能捕获到会话进行抓包。 2.宏哥环境 1.宏哥的环境是Win…

[附源码]SSM计算机毕业设计校园兼职招聘系统JAVA

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

数仓开发之DWS层(一)

目录 一&#xff1a;流量域来源关键词粒度页面浏览各窗口汇总表&#xff08;FlinkSQL&#xff09; 1.1 主要任务&#xff1a; 1.2 思路分析&#xff1a; 1.3 图解&#xff1a; 1.4 ClickHouse建表语句&#xff1a; 二&#xff1a;流量域版本-渠道-地区-访客类别粒度页面浏…

数据结构和算法之图

什么是图 定义 包含 1. 一组顶点&#xff1a;通常用V(Vertex)表示顶点集合2. 一组边&#xff1a;通常用E(Edge)表示边的集合1. 边是顶点对&#xff1a;(v,w)属于E&#xff0c;其中v,w属于V2. 有向边<v,w>表示从v指3.不考虑重边和自回路 抽象数据类型定义 1.类型名称&…

[附源码]Python计算机毕业设计SSM基于java的云顶博客系统(程序+LW)

环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 Maven管理等…

【车载开发系列】UDS诊断---诊断会话控制($0x10)

【车载开发系列】UDS诊断—诊断会话控制&#xff08;$0x10&#xff09; UDS诊断---诊断会话控制&#xff08;$0x10&#xff09;【车载开发系列】UDS诊断---诊断会话控制&#xff08;$0x10&#xff09;一.概念定义二.三种会话模式1&#xff09;默认会话2&#xff09;编程会话3&a…

【DevPress】V2.4.0版本发布,增加留资组件

DevPress V2.4.0版本于2022年9月29日发版 一、该版本功能包含 1、新需求 1&#xff09;企业社区移动端优化&#xff0c;响应式布局&#xff0c;提升用户浏览体验。 2&#xff09;增加社区留资组件&#xff0c;更好在社区首页和内容详情页展示 - 包含新建组件&#xff0c;包含…

基于PHP+MySQL医药信息查询系统的设计与开发

医药信息查询系统的基本功能包括用户注册登录,查看医药资讯,医药查询和在线留言等信息。 PHP中药管理系统是一个服务类型的网站,系统通过PHp&#xff1a;MySQL进行开发,分为前台和后台两部分,前台部分主要是让需要买药的人员查看和查询药品信息。后来部分主要是让管理员对网站的…

通过Xshell操作Jetson Nx

1 Jetson Nx Nx留有Uart2 口&#xff0c;便于使用xshell等进行操作。 串口有三根线。链接后使用。 2 XShell 软件 2.1 XShell软件介绍 XShell 软件是一个Windows上运行的终端模拟器&#xff0c;支持SSH, SFTP, TELNET, RLOGIN&#xff0c;和Serial。用于连接Unix或Linux服…

3.7.1、MAC地址(数据链路层)

1、基本介绍 连接在信道上的主机只有它们两个 一个数据链路层地址&#xff1a; 当多个主机连接在同一个广播信道上&#xff0c;要想实现两个主机之间的通信&#xff0c;则每个主机都必须有一个唯一的标识, 在每个主机发送的帧中必须携带标识发送主机和接收主机的地址。由于这…

这支神秘组织,已成功预测了多届世界杯冠军

2022卡塔尔世界杯&#xff0c;正打的如火如荼&#xff0c;也有很多人买球买的不亦乐乎。 现在就有很多朋友、粉丝&#xff0c;通过各种渠道找我&#xff0c;让我来帮他预测一下比赛。可我预测的也不准呀&#xff0c;我都是猜的&#xff0c;不过我不准&#xff0c;不见得别人不准…

m基于基站休眠的LTE-A异构网络中节能算法matlab仿真

目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB 1.算法描述 要求 1.开发一个软件工具&#xff0c;可以直观地演示如何在LTE-A异构网络中通过基站的睡眠模式节约能源 2.需要演示基于用户的移动性如何设置基站的开关(睡眠模式) 3.自己设计基站睡眠模式的直观…

Python标准库之pickle

1. pickle标准库简介 pickle&#xff0c;作为名词表示泡菜&#xff0c;作为动词表示用醋或盐水保存食物。由此不难联想到&#xff0c;用存储设备持久化保存数据。而pickle标准库恰是一个 Python 对象结构的二进制序列化和反序列化的核心库&#xff0c;专用于表示Python语言大量…

Stable Diffusion7

它也写到第七部了.. Stability AI宣布&#xff0c;Stable Diffusion 2.0版本上线&#xff01;1.0版本在今年8月出炉&#xff0c;三个月不到&#xff0c;还热乎着呢&#xff0c;新版本就来了。 深度学习文本到图像模型的最新版本——Stable Diffusion 2.0。相较于1.0&#xff…

面试必知的9个性能测试指标,你完全了解吗?

吞吐量 单位时间内&#xff0c;系统能够处理多少请求&#xff0c;吞吐量代表网络的流量&#xff0c;TPS越高&#xff0c;吞吐量越大&#xff0c;还包含了数据的吞吐量。一般单位为秒&#xff0c;每秒处理的请求量。 注意&#xff1a;我们看到的JMeter聚合报告一般如下图&…

Kotlin高仿微信-第7篇-主页-动态权限申请

Kotlin高仿微信-项目实践58篇详细讲解了各个功能点&#xff0c;包括&#xff1a;注册、登录、主页、单聊(文本、表情、语音、图片、小视频、视频通话、语音通话、红包、转账)、群聊、个人信息、朋友圈、支付服务、扫一扫、搜索好友、添加好友、开通VIP等众多功能。 Kotlin高仿…

指定牛导|肿瘤专业医生芝加哥大学博士后实现夙愿

Q医生有个愿望&#xff0c;希望拜师在牛导麾下&#xff0c;利用国家留学基金委2年博士后的机会&#xff0c;真正做出科研成果&#xff0c;发表高质量文章。为此列出了合作导师标准并指定了几位教授。经过团队努力&#xff0c;我们终于为其达成夙愿—获得指定牛导的博士后邀请函…

Redis实战之缓存:查询、添加缓存、更新缓存、缓存预热、缓存穿透、缓存雪崩、缓存击穿 解决方案及实例代码

缓存 什么是缓存? 缓存(Cache), 就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。 为什么要使用缓存&#xff1f; 缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器…

SpringBoot利用Spring SPI机制实现自动按顺序加载注册JavaBean到容器中

前言&#xff1a; 1、SPI机制(Service Provider Interface)&#xff0c;服务提供接口&#xff0c;主要是用来解耦&#xff0c;资源文件目录下的 \resources\META-INF\spring.factories 我们把它归纳为Spring为我们提供的SPI机制&#xff0c;通过这种机制&#xff0c;我们可以在…