数据结构各结构特点(数组、链表、栈、队列、树)

news2024/10/6 20:30:16

目录

 一、数组

二、链表

三、栈

四、队列

五、树

1.二叉树

2.二叉查找树

3.平衡二叉树(AVL树)

4.红黑树

 六、总结:

1.红黑树和平衡二叉树的区别:

2.为什么有了数组和链表还要引入二叉树?

3.为什么有了二叉树还要引入平衡二叉树?

4.为什么有了平衡二叉树还要引入红黑树?


 一、数组

简介:

数组是一种线性表结构,元素序列有序,在内存中开辟一段连续的内存空间。数组具有随机访问的优势,可以通过下标访问元素,时间复杂度为O(1),但插入删除操作比较复杂,需要移动其他元素,所以时间复杂度为O(n)。

特点:

1.数组在逻辑上、内存中都是连续的,数组需要开辟一段连续的内存空间

2.查找元素快:通过索引,可以快速访问指定位置的元素

3.增删元素慢:因为数组长度是固定的,如果插入删除元素的话,就要涉及到元素的移动。

缺点:

1.插入删除操作所需要移动的元素很多,效率低下。

2.数组在内存中是一段连续的内存空间,所以必须为数组开辟足够的空间,否则有溢出的风险。

二、链表

简介:

链表也是一种线性表结构,但它在内存中不一定是连续的。即逻辑上连续,物理存储结构上不连续,大小不固定。

链表基于指针实现,它的存储单元以结点为单位,每一个结点由数据域和指针域组成。

数据域:存储数据元素信息的域

指针域:存储直接后继位置的域。

遍历链表需要从头结点开始依次往后遍历,每个节点只有一个前驱结点,每个节点只有一个后继结点,首结点没有前驱结点,尾结点没有后续结点。

特点:

1.通过指针的形式将一组存储单元联系在一起的数据结构

2.逻辑上连续,物理存储结构上不连续,大小不固定

3.单链表维护一个单向的指针,通过指针寻找下一存储单元;双链表维护一个双向的指针,通过指针可以寻找上一存储单元和下一存储单元。

4.查找元素慢:链表没有索引,所以查找元素需要从头结点开始依次遍历链表

5.增删元素快:链表通过指针相连接,增删元素只需要修改指针指向即可,不需要涉及元素的移动。

单链表、双链表概念及基本功能的代码实现:

单链表的基本操作

双链表的基本操作

三、栈

概念:

栈(stack)是一个后进先出(FILO-First In Last Out)的有序列表,允许插入和删除的一端为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)。

先放入到栈的元素在栈底,后放入栈的元素为栈顶。栈顶的元素先出,栈底的元素后出。

 可以使用单链表和数组的方式实现栈。

单链表:每次插入都将元素插入到第一个位置,每次获取结点都从链表头部获取。

数组:每次插入元素都放在数组的尾部,每次获取元素也从数组尾部获取即可。

栈的概念及基本功能的代码实现:

栈的基本操作

四、队列

概念:

队列(Queue)是一个先进先出(FIFO-First In First Out)的有序列表,主要方法有入队(enqueue / offer)和出队(dequeue / poll)

可以使用单链表和数组的方式实现队列。

单链表:每次入队都将元素插入到链表尾部,每次获取结点都从链表头部获取。

数组:每次入队都将元素按顺序依次添加,每次出队都从数组前面依次出去。

队列的概念及基本功能的代码实现:

队列的基本操作

五、树

树的概念及基本功能的代码实现:

树的基本概念

1.二叉树

概念:

二叉树是每个节点最多有两个子树的树结构,也就是说树的度为2。正常情况下,左子树的结点值比父节点小,右子树的结点值比父节点大。二叉树具有很好的搜索性能,可以实现二分查找。

为什么会出现二叉树:因为二叉树,可以使用二叉法,当数据量较大的时候,比链表查询和插入效率更高,因为相同的数据量的情况下,二叉树深度一定比链表的深度小。所以查询的深度就小,所以比较节省时间

二叉树的缺点:二叉树可能会有极端的情况,就是某个节点的深度无限大,这样的二叉树和链表没啥区别,于是为了限制二叉树极端的情况,满足二叉树深度较小的情况,介继而推出了平衡二叉树。

二叉树遍历的方式:

前序遍历:根节点 -> 左节点 ->右节点

中序遍历:左节点 -> 根节点 -> 右节点

后续遍历:左节点 -> 右节点 -> 根节点

层次遍历:从根节点开始,一层一层往下遍历(采用队列来实现,将根节点放入队列中,然后出列,响应地将其左右子节点放入队列中,以此类推。)

满二叉树和完全二叉树:

满二叉树:每一层的结点数都达到最大值。

完全二叉树:若设二叉树的深度为k,除第k层外,其他各层(1~k-1)的结点数都达到最大个数,第k层所有的结点都连续集中在最左边,这就是完全二叉树。

 注:完全二叉树的话,所有的结点都连续集中在最左边,也就是如下图所示,右子节点可以没有,但如果右子节点有的话,则左子节点必须存在。下图中如果叶子结点只有4结点,5、6、7结点没有的话,也是完全二叉树。

二叉树的概念及基本功能的代码实现:

二叉树概念及基本功能实现

2.二叉查找树

概念:

二叉查找树,即左子树结点值都小于根节点,右子树结点值都大于根节点。同时具有数组的查询效率,链表的增删改效率。

通过中序遍历方式可以将二叉查找树按从小到大的方式将树各节点的值打印出来。

特点:

1.二叉查找树左子树的所有节点的值都小于父节点的值, 右子树的所有节点的值都大于父节点的值。

2.具有数组的查询效率,也具有链表的增删改性能。

 缺点:

二叉查找树的规则只要是左子树小于右子树即可,但可能会出现“一边倒”的情况,那么二叉查找树就退化成链表了,二叉查找树的查询优势也无法体现出来了。

二叉查找树的概念及基本功能的代码实现:

 二叉查找树

3.平衡二叉树(AVL树)

概念:

平衡二叉树也称AVL树,主要是为了解决二叉查询树不平衡的情况下,导致查询效率低下的解决方案。二叉查找树极端情况下会出现一边倒的情况,平衡二叉树就是为了解决这一问题,通过左旋、右旋的方式,保证树的平衡。

特点:

1.拥有二叉查找树的全部特性

2.左子树和右子树的高度差绝对值不超过1

3.插入和删除数据时需要进行平衡操作,即左旋、右旋的方式,来保证树的平衡

优缺点:

平衡二叉树保证了不会出现一边倒的情况, 通过左旋、右旋来保证了二叉树的平衡,把插入、删除、查找的时间复杂度最好和最坏情况都维持在O(logN)。但平衡二叉树这种高度差为1的要求太严格了,尤其是对于频繁删除、插入的场景非常浪费时间。

 平衡二叉树的概念及基本功能的代码实现:

平衡二叉树(AVL树)

4.红黑树

概念:

红黑树也是一种对查询效率进行优化的二叉查找树,它要求从根节点到叶子结点的最长可能路径不多于最短的可能路径的两倍长。

红黑树的特点:

  • 具有二叉树所有特点。
  • 每个节点只能是红色或者是黑色。
  • 根节点只能是黑色,且黑色根节点不存储数据。
  • 任何相邻的节点都不能同时为红色。
  • 红色的节点,它的子节点只能是黑色。
  • 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

 六、总结:

1.红黑树和平衡二叉树的区别:

(1)红黑树放弃了追求完全平衡,而是追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多两次旋转,删除最多三次旋转就能达到平衡,实现起来也更为简单。

(2)平衡二叉树追求绝对平衡,条件比较苛刻,实现起来比较麻烦,每次插入新节点之后需要旋转的次数不能预知。

所以,对于插入、删除操作较多的情况下,红黑树的效率是优于平衡二叉树的;而对于插入、删除不频繁,只是对查找要求较高,那么平衡二叉树还是较优于红黑树。

2.为什么有了数组和链表还要引入二叉树?

针对数组和链表的优缺点,无法说链表一定优于数组,或者是数组一定优于链表,因为某些长期的需要,数组在查询方面效率高,链表在插入、删除方面效率高,所以就推出一个相对折中的二叉树。二叉树在插入、删除、查询方面效率都较好。

3.为什么有了二叉树还要引入平衡二叉树?

有了二叉树还不算完,二叉树有一种极端的情况,就是所有的子结点偏向一端,二叉树退化成链表,这就相当于我选择了这种的二叉树,你现在罢工不干了,找了个链表来糊弄我...

所以为了解决二叉查找树退化为链表的情况,引入了平衡二叉树,即:

平衡二叉树是为了解决二叉树退化成一棵链表而诞生的。

4.为什么有了平衡二叉树还要引入红黑树?

实际使用过程中,因为平衡二叉树追求绝对严格的平衡关系,显然这个规则在于频繁的插入、删除等操作的情景性能肯定会出现问题...

所以为了解决这个问题,进而又引入了红黑树。

平衡二叉树追求绝对严格的平衡,平衡条件必须满足左右子树高度差不超过1,红黑树是放弃追求完全平衡,它的旋转次数少,插入最多两次旋转,删除最多三次旋转,所以对于搜索、插入、删除操作较多的情况下,红黑树的效率是优于平衡二叉树的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/443485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】从机I/O线程报错

一、报错问题 I/O线程报错 查看/var/log/mysqld.d日志,查看报错; 在从机,telnet主机的3306端口显示拒绝连接; 并且从机mysql登录用户密码问题,密码输入正确但是报错【ERROR 1045 (28000): Access denied for user root…

软件开发中的DevOps实践

一、引言 在软件开发领域,为了满足用户需求、提升产品质量、缩短产品上线时间,DevOps已经成为一种流行的开发实践方式。本文将从什么是DevOps、DevOps的理念、DevOps的价值、DevOps的实践等方面详细介绍DevOps在软件开发中的实践。 二、什么是DevOps …

python爬虫原理及源码解析(入门)

目录 一、爬虫是什么?二、爬虫的基本原理三、HTTP协议与响应4、爬虫实现源码 一、爬虫是什么? ​ 如果将互联网比作一张大的蜘蛛网,数据便是存放在蜘蛛网的各个节点,而爬虫就是一只小蜘蛛,沿着网络抓取自己的猎物(数据…

用spring-boot-starter实现事务的统一配置

一、前言 微服务架构下,多个微服务都需要事务操作,如果在每个微服务下都从头配置事务,将非常繁锁。事务配置具有高度的一致性,可以抽取出来,制作starter,在需要配置事务的服务中引入starter依赖即可。 采用…

NFS(UOS)

appsrv 172.16.146.11 strogesrv 172.16.146.53 共享/data/share目录 用于存储app主机的web数据 仅允许stora访问该共享 安装nfs apt install nfs-common nfs-kernel-server -y mkdir /data/share /data/share 172.16.146.50(rw,sync,no_root_squash,insecure) 重启服…

志特转债上市价格预测

志特转债 基本信息 转债名称:志特转债,评级:A,发行规模:6.14033亿元。 正股名称:志特新材,今日收盘价:35.6元,转股价格:41.08元。 当前转股价值 转债面值 / …

微服务学习高级篇【5】之服务异步通信(rabbitmq的高级特性)

文章目录 环境准备:MQ部署【docker环境】消息可靠性生产者消息确认项目配置定义Return回调和ConfirmCallback 消息持久化交换机持久化队列持久化消息持久化 消费者消息确认none模式演示 消费失败重试机制本地重试失败策略 总结 死信交换机初识死信交换机死信交换机接…

【DHCP原理与配置】

目录 一、了解DHCP服务使用DHCP的好处DHCP的分配方式 二、DHCP的租约过程传输协议端口DHCP的IP地址自动获取工作原理 三、配置DHCP服务器安装dhcp查看配置文件根据配置文件提示查看相关文档 四、模拟外网和内网互通进入主机1的设置进入主机2的设置复制dhcp文件,修改…

Nginx 优化与防盗链

Ngnix优化主要有两种,一种是配置上的优化,一种是内核上的优化 实验准备:安装好一台Nginx服务器,IP:192.168.126.22,域名:www.accp.com 浏览器访问nginx服务器此时F12查看网页信息,可…

MySQL之表的约束

目录 一 空属性 定义 如何设置 示例 影响: 二 默认值 定义 示例 影响: 三 列描述 定义 示例 影响: 四 zerofill 定义: 示例: 影响: 五 主键 定义 主键的性质是什么: 为什么要…

C++——一种特殊的二叉搜索树之红黑树

目录 1 红黑树的概念2 红黑树的性质3 红黑树节点的定义4 红黑树的插入操作情况一: cur为红,p为红,g为黑,u存在且为红。情况二: cur为红,p为红,g为黑(不存在连续的红结点),u不存在/u存…

设计模式 -- 适配器模式

前言 月是一轮明镜,晶莹剔透,代表着一张白纸(啥也不懂) 央是一片海洋,海乃百川,代表着一块海绵(吸纳万物) 泽是一柄利剑,千锤百炼,代表着千百锤炼(输入输出) 月央泽,学习的一种过程,从白纸->吸收各种知识->不断输入输出变成自己的内容 希望大家一起坚持这个过程,也同…

第五篇 Spring 集合注入、作用域

《Spring》篇章整体栏目 ————————————————————————————— 【第一章】spring 概念与体系结构 【第二章】spring IoC 的工作原理 【第三章】spring IOC与Bean环境搭建与应用 【第四章】spring bean定义 【第五章】Spring 集合注入、作用域 【第六章】…

时间序列分析卫星重力梯度观测值

阚昊宇 1 时间序列图 导入数据,共2880历元(86370 s)数据,取前2400历元(72000 s)数据作为训练集,后480历元作为测试集。将训练集绘制时间序列图如下图 1红色线所示,可见明显的自相关…

elementUI-el-table组件使用总结

一、背景 vue2项目中用到el-table这个组件&#xff0c;但基础的功能不够用&#xff0c;所以需要自定义 二、表头自定义 比如要让表头展现出下面的形式&#xff1a; 只需使用 slot"header" slot-scope"scope" 对插槽进行定义&#xff0c;并绑定变量 <…

快手视频艾特实操教学分享,什么是艾特脚本,评论区艾特引流脚本讲解!

大家好我是你们的小编一辞脚本&#xff0c;今天给大家分享新的知识&#xff0c;很开心可以在CSDN平台分享知识给大家,很多伙伴看不到代码我先录制一下视频 在给大家做代码&#xff0c;给大家分享一下快手艾特脚本的知识和视频演示 不懂的小伙伴可以认真看一下&#xff0c;我们…

Windows系统开启防火墙,Ubuntu与Windows互通

1.启用Windows系统防火墙&#xff0c;&#xff0c;单击"高级设置" 2.单击“入站2规则” 3.单击 “新建规则“ 4.选择“端口” 端口号设置hanwin NFS中包括的端口号。 5.选择 TCP 填写 hanewin中的端口号&#xff0c;然后单击“确认” 6.单击“入站规则” 7.右击 nf…

JAVAWeb06-动态WEB开发核心Servlet-03

1. HttpServletRequest 1.1 HttpServletRequest 介绍 HttpServletRequest 对象代表客户端的请求当客户端/浏览器通过 HTTP 协议访问服务器时&#xff0c;HTTP 请求头中的所有信息都封装在这 个对象中通过这个对象的方法&#xff0c;可以获得客户端这些信息。 1.2 HttpServle…

HTTP请求知识

一次完整的HTTP请求所经历的步骤 1&#xff1a;首先进行DNS域名解析(本地浏览器缓存&#xff0c;操作系统缓存或者DNS服务器)&#xff0c;首先会搜索浏览器自身的DNS缓存(缓存时间比较短&#xff0c;大概只有1分钟&#xff0c;且只能容纳1000条缓存) 如果浏览器自身的缓存里面…

什么是 MySQL 监控

MySQL是一个开源的关系数据库管理系统&#xff0c;它基于客户端-服务器模型运行&#xff0c;使用SQL作为其通信模式。它是世界上第二受欢迎的数据库&#xff0c;因为它具有灵活性和可扩展性、高安全性、易用性以及无缝处理大型数据集的能力。由于其广泛的功能&#xff0c;MySQL…