目录
前言:
效果:
实现步骤:
Code:
前言:
本文介绍了Python VTK映射三维模型表面距离,通过如何使用VTK计算两个三维模型(stl)的表面距离,并将其距离值以颜色映射到模型,可用于对比 两相模型的相似度;
效果:
我使用同一个stl 模型,旋转了一点,进行对比,原点是黄色,旋转最少:
实现步骤:
数据准备: 需要准备两个stl文件、Python需要安装vtk库
步骤一:数据读取 首先通过vtk.vtkSTLReader() 定义stl文件读取接口,再通过reader1.GetOutput() 就可以获得stl在vtk工作流的数据。
步骤二:去除重复点 通过vtk.vtkCleanPolyData() 可以去除模型中的重复点
步骤三:计算距离 使用 vtk.vtkDistancePolyDataFilter() ,使用上一步中过滤掉重复点后的数据作为输入。如distanceFilter.SetInputConnection(1, clean1.GetOutputPort()), 其中第一个参数就是输入数据的标号,从0开始计数;第二个参数就是输入的数据。我们将vtkDistancePolyDataFilter的输出到mapper就完成距离映射了。
步骤四:颜色配置 lut = vtk.vtkLookupTable() 相当于一个调色盘函数,通过对其参数改变可以,调整最终映射的颜色范围。 scalarBar = vtk.vtkScalarBarActor() 就是颜色条,按照前面的调色盘的结果将距离数值映射成颜色。
Code:
import vtk
input1 = vtk.vtkPolyData()
reader1 = vtk.vtkSTLReader()
reader1.SetFileName('leftlumen.stl')
reader1.Update()
input1 = reader1.GetOutput() # 读取模型A
input2 = vtk.vtkPolyData()
input2.DeepCopy(input1)
pTransformSTL = vtk.vtkTransform()
pTransformSTL.RotateY(0.1)
pTransformSTL.Update()
transFilter = vtk.vtkTransformPolyDataFilter()
transFilter.SetInputData(input2)
transFilter.SetTransform(pTransformSTL)
transFilter.Update()
# 数据合并,可以合并显示两个模型
clean1 = vtk.vtkCleanPolyData()
clean1.SetInputData(input1)
clean2 = vtk.vtkCleanPolyData()
clean2.SetInputData(transFilter.GetOutput())
distanceFilter = vtk.vtkDistancePolyDataFilter()
distanceFilter.SetInputConnection(1, clean1.GetOutputPort())
distanceFilter.SetInputConnection(0, clean2.GetOutputPort())
distanceFilter.SignedDistanceOff()
distanceFilter.Update() # 计算距离
distanceFilter.GetOutputPort()
mapper = vtk.vtkPolyDataMapper() # 配置mapper
mapper.SetInputConnection(distanceFilter.GetOutputPort())
mapper.SetScalarRange( # 设置颜色映射范围
distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[0],
distanceFilter.GetOutput().GetPointData().GetScalars().GetRange()[1])
actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor1 = vtk.vtkActor()
actor1.SetMapper(mapper)
lut = vtk.vtkLookupTable()
lut.SetHueRange(0.2, 0.7) # 映射的颜色变换参数(自己调颜色)
# lut.SetAlphaRange(1.0, 1.0)
# lut.SetValueRange(1.0, 1.0)
# lut.SetSaturationRange(1.0, 1.0)
# lut.SetNumberOfTableValues(256)
mapper.SetLookupTable(lut)
mapper2 = vtk.vtkPolyDataMapper()
mapper2.SetInputData((distanceFilter.GetSecondDistanceOutput()))
mapper2.SetScalarRange( # 设置颜色映射范围
distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[0],
distanceFilter.GetSecondDistanceOutput().GetPointData().GetScalars().GetRange()[1])
actor2 = vtk.vtkActor()
actor2.SetMapper(mapper2)
scalarBar = vtk.vtkScalarBarActor() # 设置color_bar
scalarBar.SetLookupTable(mapper.GetLookupTable())
scalarBar.SetTitle("SD(mm)")
scalarBar.SetNumberOfLabels(5) # 设置要显示的刻度标签数。自己设定色带的位置
scalarBar.SetMaximumNumberOfColors(10)
# scalarBar.GetPositionCoordinate().SetCoordinateSystemToNormalizedViewport()
# scalarBar.GetPositionCoordinate().SetValue(0.01, 0.49) # 参数越小越靠左,第二个参数越大越往上
# scalarBar.SetWidth(0.16)
# scalarBar.SetHeight(0.5)
# scalarBar.SetTextPositionToPrecedeScalarBar() # 标题和刻度标记是否应在标量栏之前(文字会出现在条形左边)
# # 设置标题和条形之间的边距
# scalarBar.SetVerticalTitleSeparation(10)
# # 设置标题颜色
scalarBar.DrawTickLabelsOn()
scalarBar.GetTitleTextProperty().SetColor(0, 0, 0)
scalarBar.GetLabelTextProperty().SetColor(0, 0, 0)
arender = vtk.vtkRenderer()
arender.SetViewport(0, 0.0, 1, 1.0)
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(arender)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
style = vtk.vtkInteractorStyleTrackballActor()
iren.SetInteractorStyle(style)
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, -1, 0)
aCamera.ComputeViewPlaneNormal()
aCamera.Azimuth(30.0)
aCamera.Elevation(30.0)
aCamera.Dolly(1.5)
arender.AddActor(actor)
# arender.AddActor(actor1)
arender.SetActiveCamera(aCamera)
arender.ResetCamera()
arender.SetBackground(1, 1, 1)
arender.ResetCameraClippingRange()
arender.AddActor2D(scalarBar)
renWin.Render()
iren.Initialize()
iren.Start()