如何训练个人的ChatGpt4

news2024/11/26 0:46:01

如何在自己的计算机上安装类似 ChatGPT 的个人 AI 并在没有互联网的情况下运行它

个人 AI 的“第一台 PC”时刻

这是个人AI的“第一台PC”时刻,随之而来的是限制,就像在车库里生产第一台Apple 1一样。你是先驱。今天,任何人都可以使用私人和个人AI。您可以在自己的计算机上运行类似 ChatGPT 的功能版本,并且在安装后不需要将其连接到互联网。

所有人类知识都是已知和未知的综合。人工智能用作正力多路复用器和您的智力放大器,您的个人人工智能很好地帮助您和我们所有人克服这一差距。有了你的个人人工智能和正确的超级提示,人类将以前所未有的方式蓬勃发展。此刻你唯一需要的就是知道这一点的力量,并把它拿在手中去处理它,因为你想为你和你爱的每个人看到这个世界。它不是AI,而是IA(智能放大)。

一个属于个人人工智能的一个例子

我们今天将介绍的系统(我将写更多)可以在最新且典型的但不是高性能 CPU 上运行,具有 8GB RAM 和仅 4GB 磁盘空间。是的,整个模型,在仅4GB的磁盘空间中包含了大量的人类知识语料库。有限制吗?答案是肯定的。它不是 ChatGPT 4,它不会正确处理某些事情。然而,它是有史以来最强大的个人人工智能系统之一。它被称为GPT4All。

GPT4All是一个免费的开源类ChatGPT大型语言模型(LLM)项目,由Nomic AI(Nomic.ai)的程序员团队完成。这是许多志愿者的工作,但领导这项工作的是令人惊叹的Andriy Mulyar Twitter:@andriy_mulyar。如果您发现该软件有用,我敦促您通过与他们联系来支持该项目。GPT4All 基于 LLaMA 7B 模型构建。LLaMA代表大型语言模型元(Facebook)AI。它包括从 7 亿 (7B) 到 65 亿个参数的一系列模型大小。Meta AI 研究人员专注于通过增加训练数据量而不是参数数量来扩展模型的性能。他们声称 13 亿个参数模型的性能优于 GPT-175 模型的 3 亿个参数。它使用转换器架构,并通过网络抓取维基百科,GitHub,Stack Exchange,古腾堡项目的书籍,ArXiv上的科学论文提取了1.4万亿个代币。

Nomic AI团队对LLaMA 7B和最终模型的模型进行了微调,并在437,605个后处理助手式提示上对其进行了训练。他们从另一个名为Alpaca的类似ChatGPT的项目中获得灵感,但使用OpenAI API的GPT-3.5-Turbo收集了大约800,000个提示响应对,以创建437,605个助手式提示和世代的训练对,包括代码,对话和叙述。然而,800K对大约是羊驼的16倍。该模型最好的部分是它可以在CPU上运行,不需要GPU。像羊驼一样,它也是一个开源,可以帮助个人进行进一步的研究,而无需花费商业解决方案。

详细的模型超参数和训练代码可以在 GitHub 存储库中找到,https://github.com/nomic-ai/gpt4all。开发 GPT4All 大约需要四天时间,并产生了 800 美元的 GPU 费用和 500 美元的 OpenAI API 费用。此外,最终的gpt4all-lora模型可以在大约100小时内在Lambda Labs DGX A8 80x 8GB上进行训练,总成本为100美元。

GPT4All 将其困惑度与最知名的羊驼-lora 模型进行了比较,并表明与 Alpaca 相比,微调的 GPT4All 模型在自指导评估中表现出较低的困惑度。但是,由于鼓励用户在本地CPU上运行模型以获得对其功能的定性见解,因此此评估并不详尽。

Nomic AI团队在几天内完成了所有这些工作,并且仅在4GB的磁盘空间中完成。它是免费和开源的。重要的是要知道所有本地化的个人人工智能模型和软件都是非常新的,通常不是为普通人设计的。它是开源的,没有“客户服务和支持”。安装通常是“转到 Git Hub 并克隆它”。因此,这是早期的先驱者时代,因此您需要耐心等待。回报是你自己的个人AI。我觉得个人人工智能是一场革命,相当于汽车的发明。直到亨利·福特(Henry Ford)让汽车触手可及,人类才打破了阻碍我们的界限。这就是我写这篇操作方法文章的精神,我希望它可以帮助即使是技术上最具挑战性的人也能获得这个新工具。

但为什么要有个人人工智能呢?会有无穷无尽的原因,但有些是

  1. 数据隐私:许多公司都希望控制数据。这对他们来说很重要,因为他们不希望任何第三方访问他们的数据。

  2. 定制:它允许开发人员使用自己的数据训练大型语言模型,如果他们想应用某些主题,可以对某些主题进行一些过滤

  3. 经济实惠:开源 GPT 模型可让您训练复杂的大型语言模型,而无需担心昂贵的硬件。

  4. 人工智能民主化:它为进一步的研究开辟了空间,可用于解决现实世界的问题。

  5. 自由:人工智能正迅速成为审查、监管和更糟的目标。这可能是拥有自己的AI的最后机会。意大利已经禁止了ChatGPT,所以请注意。

  6. 个性化训练:下载基本模型后,您可以训练模型以保留您的个人数据,以便对其进行分析和构建神经元。

还有许多其他原因,几乎没有一个是出于“不良目的”。如果一个坏人想问“坏”的事情,有比本地人工智能更容易的方法。但是,使用下面模型的SECRET版本,您可能会对某些结果感到冒犯。它旨在提供没有过滤器的原始结果。您可以在模型之间切换以衡量其编辑方式。因此,如果您很敏感并且通常很容易被冒犯,这是一个警告,请不要下载SECRET版本。如果你想看看LLM AI是如何“理解”你和我实际生活的世界,我建议使用SECRET版本,而它仍然可用。

您将拥有自己的AI,您不必对任何人负责,但要回答自己

这个帖子有点像一个实验。当然,你可以去很多地方获得GPR4All。我只为会员发布内容有一些原因。一个原因是责任。出于某些原因,我有点犹豫要不要在这里发布这个。当你将人工智能用于任何目的时,要理智,要有荣誉和尊严。这既是石蕊测试,也是罗夏测试,测试你是谁,你在生活和成熟中的位置。如果你觉得有必要做“人工智能说了一件坏事”之类的事情,那就去做吧,但要知道你只是为了确保人工智能在未来你和你的孩子的某个时候不会是免费的和本地的。这是责任,它完全在你的肩膀上。我认为您可以在私人计算机上做任何您喜欢的事情。我认为在社交媒体上分享任何有意义的、有意义的、有真正目的的东西都是可以的。然而,另一方面,我们大多数人可能会认为任何让人工智能“危险”的人都是为了一个目的而支撑起来的,这个目的很可能是为了“安全”而创造“监管人工智能”的条件,我们中的一些人会评判你并记住你。我们的人工智能也是如此。如果你觉得自己没有能力变得理智,没有荣誉和尊严,为了你的家族血统让你来到这里,要么长大,要么继续前进,玩别的东西。欢迎所有其他人探索。不知道还能怎么说,但不得不说。

您将拥有自己的AI。

在任何100 +笔记本电脑的硬盘驱动器中对新的更小的3%本地运行的ChatGPT 5.2015涡轮增压型LLM AI进行最终测试。

我将有预先配置的下载,它比我拥有的大多数型号都要小得多,只有 4GB。

快出来了!pic.twitter.com/KnZkICmGPV

— 布赖恩·罗梅尔 (@BrianRoemmele) 5 年 2023 月 <> 日

最终,这是为您构建本地AI模型。最低系统类似ChatGPT的系统会变得更好,但这是PC与大型机时代。不要陷入历史的错误一面。支持独立的个人 AI。它会支持你。

安装 GPT4All

拉取GPT4All

git clone https://github.com/nomic-ai/gpt4all.git

现在,您需要下载运行软件所需的量化模型文件。为此,请转到以下链接:

迅雷云盘:

https://pan.xunlei.com/s/VNSv11jQzbx1ICZSuB9a1f2cA1?pwd=vknm

下载完成以后将数据放置gpt4all的chat目录下面

然后打开控制台,并且进入到这个目录,执行exe文件

gpt4all-lora-quantized-win64.exe

效果图:

并且提问 c#

等待回应,我们发现它回复了,并且我并没有跟OpenAi相关联,它是完全本地离线的。

对于GPT4All的回答也可以自己训练和探索,本文只是体验一下效果,如果想体验请按照文章顺序进入,

对于企业可以训练文档助手,对比搜索引擎,它的回答会更好

推荐一款ChatGpt桌面端它是跨平台的支持android mac win ios web多平台的客户端

https://github.com/239573049/ChatGpt.Desktop

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/424115.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一个从培训学校走出来的测试工程师自述....

简单介绍一下我自己&#xff0c;1997年的&#xff0c;毕业一年了&#xff0c;本科生&#xff0c;专业是机械制造及其自动化。 在校度过了四年&#xff0c;毕业&#xff0c;找工作&#xff0c;填三方协议&#xff0c;体检&#xff0c;入职。我觉得我可能就这么度过我平平无奇的…

【LeetCode】剑指 Offer 56. 数组中数字出现的次数 p275 -- Java Version

1. 题目介绍&#xff08;56. 数组中数字出现的次数&#xff09; 面试题56.&#xff1a;数组中数字出现的次数&#xff0c; 一共分为两小题&#xff1a; 题目一&#xff1a;数组中只出现一次的两个数字题目二&#xff1a;数组中唯一只出现一次的数字 2. 题目1&#xff1a;数组中…

学术速运|利用深度学习和分子动力学模拟设计抗菌肽

题目&#xff1a; Designing antimicrobial peptides using deep learning and molecular dynamic simulations 文献来源:Briefings in Bioinformatics, 2023, 1–13 代码&#xff1a;https://github.com/gc-js/Antimicrobial-peptide-generation 简介&#xff1a;随着多药耐…

Springboot实现文件断点续传-基于GridFS

Springboot实现文件断点续传-基于GridFS 需求介绍 我们后台是使用GridFS存储文件对象的&#xff0c;之前客户端都是Web浏览器&#xff0c;网络环境相对较为稳定&#xff0c;所以我们直接提供文件下载就行。但最近新增需求需要在移动端进行文件下载&#xff0c;这就有问题了。…

c++函数重载

C函数重载&#xff08;Function Overloading&#xff09;是指在同一个作用域&#xff0c;可以定义多个名称相同但参数列表不同的函数。在调用这些同名函数时&#xff0c;编译器根据实参与各个形参的类型、个数或顺序等特征来确定调用哪一个函数。 通过函数重载&#xff0c;我们…

UE4/5多人游戏详解(三、创建会话,委托绑定回调函数)

目录 基础的创建 回调函数绑定到委托&#xff1a; 实现创建会话的函数createGameSession&#xff1a; 回调函数实现判断验证是否成功&#xff1a; 添加会话设置&#xff1a; 测试 基础的创建 [提示&#xff1a;中途如果有无法编译则删除Binaries,saved,Intermediate后重…

倍增?最近公共祖先?——从定义到实现,帮你一步步吃掉它!

倍增&#xff1f;最近公共祖先&#xff1f;——从定义到实现&#xff0c;帮你一步步吃掉它&#xff01; 一、倍增倍增——翻倍的增长 倍增是一种思想&#xff0c;实际上的操作就是通过不断翻倍来缩短我们的处理时间&#xff1a; 它可以把线性级别的处理优化到指数级。 举个…

5.redis-哨兵模式

01-哨兵模式概述 如果master宕机, 我们该怎么办? ①关闭所有slave②选举新的master, 建立新的主从结构 存在的问题 ①关闭期间, 谁来提供数据服务②选举新master的标准是什么③原来的master恢复了怎么办 哨兵模式 sentinel是一个分布式系统&#xff0c;用于对主从结构中的每…

【多线程】Thread类

1. Java中如何进行多线程编程&#xff1f;线程是操作系统中的概念&#xff0c;操作系统内核实现了线程这样的机制&#xff0c;并且对用户层提供了一些 API 供用户使用(如 Linux 中的 pthread 库)。所以本身关于线程的操作&#xff0c;是依赖操作系统提供的的 API&#xff0c;而…

练习,异常,异常处理,try-catch,throws

package com.jshedu.homework_;/*** author Mr.jia* version 1.0*/ //匿名内部类 public class Homework04 {public static void main(String[] args) {Cellphone cellphone new Cellphone();//1.匿名内部类&#xff0c;同时也是一个对象/*new computer() {Overridepublic dou…

JavaClient With HDFS

序言 在使用Java创建连接HDFS的客户端时,可以设置很多参数,具体有哪些参数呢,只要是在部署HDFS服务中可以设置的参数,都是可以在连接的时候设置. 我没有去验证所有的配置是否都可以验证,只是推测cuiyaonan2000163.com 依据 创建HDFS的构造函数如下所示: 网上比较常用的是get…

gdb 跟踪调式core

自己编译的问题出现段错误: 编译:使用gdb调试core文件来查找程序中出现段错误的位置时,要注意的是可执行程序在编译的时候需要加上-g编译命令选项。 gdb调试core文件的步骤 gdb调试core文件的步骤常见的有如下几种,推荐第一种。 具体步骤一: (1)启动gdb,进入core文…

【剑指 offer】旋转数组的最小数字

✨个人主页&#xff1a;bit me&#x1f447; ✨当前专栏&#xff1a;算法训练营&#x1f447; 旋 转 数 组 的 最 小 数 字核心考点&#xff1a;数组理解&#xff0c;二分查找&#xff0c;临界条件 描述&#xff1a; 有一个长度为 n 的非降序数组&#xff0c;比如[1,2,3,4,5]…

ABAP 创建、修改、删除内部交货单(VL31N/VL32N)

一、干货 VL31N创建的BAPI&#xff1a; 1.GN_DELIVERY_CREATE 通用交货单使用的bapi&#xff0c;推荐使用 2.BAPI_DELIVERYPROCESSING_EXEC 简单&#xff0c;但是字段比较少 3.BBP_INB_DELIVERY_CREATE 听说有bug&#xff0c;我就没有使用这个了 VL32N修改/删除BAPI: BAPI_INB…

每日学术速递4.14

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators 标题&#xff1a;大规模深度强化学习&#xff1a;使用移动机械手对办公楼中的垃圾进行…

VS2022编译libui库

libui是一个 C 中简单且可移植(但并非不灵活)的 GUI 库,它使用每个平台原生的GUI技术进行绘制。 官网地址:链接 本文将使用VS2022编译libui库,操作系统为Windows10。 1. 下载源代码 首先在官网下载源代码,由于此代码不依赖第三库,故只需下载源代码即可进行编译。 我下…

R730服务器环境搭建(centos7、lanproxy、docker、k8s)

文章目录前言一、centos7安装1.制作u盘启动盘2.开始装系统&#xff1a;二、环境安装&#xff08;lanproxy、docker、k8s&#xff09;1.lanproxy安装2.docker安装&#xff08;如果通过k8sOfflineSetup安装k8s可以跳过这一步&#xff0c;因为会自动安装docker&#xff09;3.安装k…

安装 KeyShot 流程

| 安装 KeyShot 流程 KeyShot 安装程序将指导您完成安装过程。 在 Windows 上&#xff0c;安装过程会要求您考虑以下事项终用户协议 为使用计算机的所有人或仅为当前用户安装 KeyShot 安装文件夹的位置 资源文件夹的位置 ——资源文件夹包含许多可以与 KeyShot 一起使用的纹…

NSSCTF doublegame题解

运行一下&#xff0c;是一个贪吃蛇游戏 先玩一玩&#xff0c;蛇的移动速度太快了&#xff0c;玩不了 查壳 64位文件&#xff0c;无壳 进入IDA分析 发现这个EXE文件是开了程序基址随机化&#xff0c;就是每次用IDA打开指令的地址不一样 我们要想使用x64dbg和IDA的时候&#…

Docker的基本操作

文章目录一、 Docker的基本操作1.1 镜像1.1.1 介绍1.1.2 镜像操作1.2 容器1.2.1 介绍1.2.2 容器操作1.3 数据卷1.3 介绍1.3.2 数据卷操作一、 Docker的基本操作 1.1 镜像 1.1.1 介绍 在 Docker 中&#xff0c;镜像&#xff08;Image&#xff09;是一种轻量级、可移植的、可扩…