深入理解PyTorch中的train()、eval()和no_grad()

news2024/11/28 0:37:52

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

PyTorch中的train()、eval()和no_grad()

(封面图由文心一格生成)

深入理解PyTorch中的train()、eval()和no_grad()

在PyTorch中,train()、eval()和no_grad()是三个非常重要的函数,用于在训练和评估神经网络时进行不同的操作。在本文中,我们将深入了解这三个函数的区别与联系,并结合代码进行讲解。

什么是train()函数?

在PyTorch中,train()方法是用于在训练神经网络时启用dropout、batch normalization和其他特定于训练的操作的函数。这个方法会通知模型进行反向传播,并更新模型的权重和偏差。

在训练期间,我们通常会对模型的参数进行调整,以使其更好地拟合训练数据。而dropout和batch normalization层的行为可能会有所不同,因此在训练期间需要启用它们。

下面是一个使用train()方法的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()

在上面的代码中,我们首先定义了一个简单的神经网络模型MyModel,它包含两个全连接层。然后我们定义了一个优化器和损失函数,用于训练模型。

在训练循环中,我们首先使用train()方法启用dropout和batch normalization层,然后计算模型的输出和损失,进行反向传播,并使用优化器更新模型的权重和偏差。

什么是eval()函数?

eval()方法是用于在评估模型性能时禁用dropout和batch normalization的函数。它还可以用于在测试数据上进行推理。这个方法不会更新模型的权重和偏差。

在评估期间,我们通常只需要使用模型来生成预测结果,而不需要进行参数调整。因此,在评估期间应该禁用dropout和batch normalization,以确保模型的行为是一致的。

下面是一个使用eval()方法的示例代码:

for epoch in range(num_epochs):
    model.eval()
    with torch.no_grad():
        outputs = model(inputs)
        loss = criterion(outputs, targets)

在上面的代码中,我们使用eval()方法禁用dropout和batch normalization层,并使用no_grad()函数禁止梯度计算。
在no_grad()函数中禁止梯度计算是为了避免在评估期间浪费计算资源,因为我们通常不需要计算梯度。

什么是no_grad()函数?

no_grad()方法是用于在评估模型性能时禁用autograd引擎的梯度计算的函数。这是因为在评估过程中,我们通常不需要计算梯度。因此,使用no_grad()方法可以提高代码的运行效率。

在PyTorch中,所有的张量都可以被视为计算图中的节点,每个节点都有一个梯度,用于计算反向传播。no_grad()方法可以用于禁止梯度计算,从而节省内存和计算资源。

下面是一个使用no_grad()方法的示例代码:

with torch.no_grad():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在上面的代码中,我们使用no_grad()方法禁止梯度计算,并计算模型的输出和损失。

train()、eval()和no_grad()函数的联系

三个函数之间的联系非常紧密,因为它们都涉及到模型的训练和评估。在训练期间,我们需要启用dropout和batch normalization,以便更好地拟合训练数据,并使用autograd引擎计算梯度。在评估期间,我们需要禁用dropout和batch normalization,以确保模型的行为是一致的,并使用no_grad()方法禁止梯度计算。

下面是一个完整的示例代码,展示了如何使用train()、eval()和no_grad()函数来训练和评估一个简单的神经网络模型:

import torch
import torch.nn as nn
import torch.optim as optim

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.1)
criterion = nn.CrossEntropyLoss()

# 训练模型
model.train()
for epoch in range(num_epochs):
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()

# 评估模型
model.eval()
with torch.no_grad():
    outputs = model(inputs)
    loss = criterion(outputs, targets)

在上面的代码中,我们首先定义了一个简单的神经网络模型MyModel,然后定义了一个优化器和损失函数,用于训练和评估模型。

在训练循环中,我们首先使用train()方法启用dropout和batch normalization层,并进行反向传播和优化器更新。在评估循环中,我们使用eval()方法禁用dropout和batch normalization层,并使用no_grad()方法禁止梯度计算,计算模型的输出和损失。

总结

在本文中,我们介绍了PyTorch中的train()、eval()和no_grad()函数,并深入了解了它们的区别与联系。在训练神经网络模型时,我们需要使用train()函数启用dropout和batch normalization,并使用autograd引擎计算梯度。在评估模型性能时,我们需要使用eval()函数禁用dropout和batch normalization,并使用no_grad()函数禁止梯度计算,以提高代码的运行效率。这三个函数是PyTorch中非常重要的函数,熟练掌握它们对于训练和评估神经网络模型非常有帮助。


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/423447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】栈的实现

😛作者:日出等日落 📘 专栏:数据结构 🌹 如果说,读书是在奠定人生的基石,在梳理人生的羽毛,那么,实践,就是在构建人生的厅堂,历练人生的翅膀。是不…

阿里P7晒工资条,看完好扎心了……

前几天,有位老粉私信我,说看到某95后学弟晒出阿里P7的工资单,他是真酸了…想狠补下技术,努力冲一把大厂。 为了帮到他,也为了大家能在最短的时间内做面试复习,我把软件测试面试系列都汇总在这一篇文章了。 …

自然语言处理: 知识图谱的十年

动动发财的小手,点个赞吧! NLP 中结合结构化和非结构化知识的研究概况 自 2012 年谷歌推出知识图谱 (KG) 以来,知识图谱 (KGs) 在学术界和工业界都引起了广泛关注 (Singhal, 2012)。作为实体之间语义关系的表示,知识图谱已被证明与…

ECharts 横向柱状图自动滚动

核心代码 const seriesList [120, 200, 150, 80, 70, 110, 130, 120, 200, 150, 120, 200]; const xAxisList [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; const dataZoomEndValue 6; // 数据窗口范围的结束数值(一次性展示几个) dataZoom: [{show: false, // 是否显示滑动…

Java面向对象高级【类加载器】

目录 Java程序是怎样被运行的 类加载器的作用 加载类文件 链接类 定位类 类加载器间的委派 实现类的隔离 类加载器的类型 启动类加载器(Bootstrap Class Loader) 扩展类加载器(Extension Class Loader) 应用程序类加载器…

数据结构和算法学习记录——二叉树的非递归遍历(中序遍历、先序遍历、后序遍历)

目录 中序遍历 代码实现 思路图解 先序遍历 代码实现 后序遍历 思路图解 二叉树的非递归遍历运用到堆栈 中序遍历 循环的思路是 遇到一个节点,就把它压栈,并去遍历它的左子树。当左子树遍历结束之后,从栈顶弹出这个节点并访问…

MybatisPlus主键策略

Mybatis默认主键策略是TableId(type IdType.ASSIGN_ID) 这是默认策略雪花算法 此时主键类型可以是String 数据表字段类型可以是bigint int varchar 无需数据表主键自增 TableId(type IdType.ASSIGN_AUTO) 是主键自增策略:该策略为跟随数据库表的主键递增策略&…

大数据挖掘建模平台产品功能特点

大数据挖掘建模平台是面向大数据挖掘教学实训的工具。在“泰迪杯”数据挖掘挑战赛中大多学生都有使用到该工具,平台采用可视化操作方式,通过丰富内置算法,帮助用户快速、一站式的进行数据分析及挖掘建模。可应用于处理海量数据、高复杂性的数…

C语言判断素数的实现及数学原理

本篇博客会讲解如何使用C语言来判断一个整数是不是素数。 实现方法 如何判断一个数是不是素数呢?如果这个数只能被1或者它自己整除,那么它就是一个素数。 如何写代码来判断呢?假设要判断一个数num是不是素数,就让2~(num-1)的数…

LeetCode037之解数独(相关话题:回溯法)

题目描述 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)数独部分空格内已填入了数字,空白格用 . 表示…

Nginx入门和使用

Nginx入门 基础 https://blog.csdn.net/weixin_40792878/article/details/83316519 快速入门 Nginx 是一个高性能的 HTTP 和反向代理服务器,特点是占有内存少,并发能力强; 代理:用于隐藏客户端或者目标服务器,是客…

通过案例来了解响应式开发(HTML,CSS)的视频控件

目录 前言 一、视频控件的使用方法 1.语法 二、部分属性 二、案例举例 三、播放效果 前言 1.本文讲解的响应式开发技术(HTML5CSS3Bootstrap)的HTML5表单等功能方法的代码,这也是很多教材的一个典型案例; 2.本文将讲解涉及到…

腾讯轻联测试预览报错怎么办?

在腾讯轻联配置过程中,经常遇到测试预览失败的报错。首先我们整体介绍一下【测试预览】的作用。增加【测试预览】的节点的作用主要有两个: ● 第一个作用是为了保证我们应用连接能通畅,可以获取到数据,避免后续由于设置问题&…

IntelliJ IDEA安装及jsp开发环境搭建

一、前言 现在.net国内市场不怎么好,公司整个.net组技术转型,就个人来说还是更喜欢.net,毕竟不是什么公司都像微软一样财大气粗开发出VS这样的宇宙级IDE供开发者使用,双击sln即可打开项目,一直想吐槽为嘛java项目只能i…

Docker Registry 本地镜像发布到私有库

本地镜像发布到私有库流程 是什么1 官方Docker Hub地址:https://hub.docker.com/,中国大陆访问太慢了且准备被阿里云取代的趋势,不太主流。2 Dockerhub、阿里云这样的公共镜像仓库可能不太方便,涉及机密的公司不可能提供镜像给公…

【Spring Security】 入门实战

文章目录一、基本概念二、Spring Security第一个程序三、Spring Security没有生效四、修改默认账号密码(appliction.yml)五、修改默认账号密码(配置类)六、Spring Security的三个configure方法七、Spring Security的三种身份的验证…

Android 面试—深入理解Android类加载机制

前言 任何一个java程序都是由一个或者多个class文件组成,在程序运行时,需要将class文件加载到JVM中才可以使用,负责加载这些class文件的就是java的类加载机制。ClassLoader的作用简单的来说就是加载class文件,提供给程序运行时使…

结构体联合体sizeof内存求值 - 对齐数

讲解下struct和union的内存求值和对齐 以题目讲解 结构体联合体sizeof内存求值 - 对齐数不同位数下类型字节大小内存对齐规则struct 内存对齐求值嵌套struct内存对齐求值union的内存大小求值union大小计算准则struct嵌套union内存对齐求值不同位数下类型字节大小 一定要搞清楚…

【机器学习】P18 反向传播(导数、微积分、链式法则、前向传播、后向传播流程、神经网络)

反向传播反向传播反向传播中的数学导数与python链式法则简单神经网络处理流程从而理解反向传播神经网络与前向传播神经网络与反向传播反向传播 反向传播(back propagation)是一种用于训练神经网络的算法,其作用是计算神经网络中每个参数对损…

【Java虚拟机】JVM核心基础和常见参数实战

1.新版JVM内存组成部分和堆空间分布 JVM内存的5大组成(基于JDK8的HotSpot虚拟机,不同虚拟机不同版本会有不一样) 名称作用特点程序计数器也叫PC寄存器,用于记录当前线程执行的字节码指令位置,以便线程在恢复执行时能…