Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的直方图算法增强(C#)

news2024/10/4 7:28:37

Baumer工业相机堡盟工业相机如何联合BGAPISDK和OpenCVSharp实现图像的直方图算法增强(C#)

  • Baumer工业相机
  • Baumer工业相机使用图像算法增加图像的技术背景
  • Baumer工业相机通过BGAPI SDK联合OpenCV使用图像增强算法
    • 1.引用合适的类文件
    • 2.BGAPI SDK在图像回调中引用OpenCV的直方图算法
    • 3.OpenCV直方图算法进行图像增强
  • Baumer工业相机使用图像算法增强图像的优势
  • Baumer工业相机使用图像算法增强图像的行业应用

Baumer工业相机

Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。

Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。

Baumer工业相机由于其性能和质量的优越和稳定,常用于高速同步采集领域,通常使用各种图像算法来提高其捕获的图像的质量。

Baumer工业相机使用图像算法增加图像的技术背景

工业相机通常使用各种图像算法来提高其捕获的图像的质量。这些算法旨在提高图像的清晰度、对比度、色彩准确性和整体图像质量。

最常用的算法之一是降噪算法。该算法用于消除图像中可能出现的任何随机噪声或颗粒。另一个流行的算法是图像稳定算法。该算法用于减少由相机抖动引起的模糊现象。

另一个用于工业相机的流行图像算法是边缘增强算法。该算法用于提高图像中边缘的清晰度。它通过检测图像中的边缘,然后增加这些边缘的对比度来工作。

直方图均衡化是另一种用于工业相机的图像算法。该算法通过重新分配像素值以覆盖图像中的整个可用值范围来改善图像的对比度。

总的来说,这些图像算法帮助工业相机捕获清晰和高质量的图像。它们在现代成像系统中起着至关重要的作用,在机器人、显微镜和医学成像等领域至关重要。

本文这里只简单使用Baumer工业相机进行直方图均衡化的图像算法。

Baumer工业相机通过BGAPI SDK联合OpenCV使用图像增强算法

下面介绍在C#里Baumer工业相机在回调函数里直接进行图像增强的演示

1.引用合适的类文件

代码如下(示例):

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using BGAPI2;
using System.Runtime.InteropServices;
using System.IO;
using CSCameraDemo.Properties;
using System.Globalization;
using WindowsFormsApplication1;
using System.Threading.Tasks;
using System.Threading;
using System.Drawing.Imaging;

using OpenCvSharp;
using OpenCvSharp.Dnn;

2.BGAPI SDK在图像回调中引用OpenCV的直方图算法

代码如下(示例),C#调用代码如下所示:

void mDataStream_NewBufferEvent(object sender, BGAPI2.Events.NewBufferEventArgs mDSEvent)
{
    try
    {
        BGAPI2.Buffer mBufferFilled = null;              
        mBufferFilled = mDSEvent.BufferObj;
        if (mBufferFilled == null)
        {
            MessageBox.Show("Error: Buffer Timeout after 1000 ms!");
        }
        else if (mBufferFilled.IsIncomplete == true)
        {
            //MessageBox.Show("Error: Image is incomplete!");
            //queue buffer again
            mBufferFilled.QueueBuffer();
        }
        else
        {
            #region//获取当前FrameID
            FrameIDInt = (int)mBufferFilled.FrameID;
            OnNotifySetFrameID(FrameIDInt.ToString());
            #endregion

            //将相机内部图像内存数据转为bitmap数据
            System.Drawing.Bitmap bitmap  = new System.Drawing.Bitmap((int)mBufferFilled.Width, (int)mBufferFilled.Height, (int)mBufferFilled.Width,
                System.Drawing.Imaging.PixelFormat.Format8bppIndexed, (IntPtr)((ulong)mBufferFilled.MemPtr + mBufferFilled.ImageOffset));
                                      
            #region//Mono图像数据转换。彩色图像数据转换于此不同
            System.Drawing.Imaging.ColorPalette palette = bitmap.Palette;
            int nColors = 256;
            for (int ix = 0; ix < nColors; ix++)
            {
                uint Alpha = 0xFF;
                uint Intensity = (uint)(ix * 0xFF / (nColors - 1));
                palette.Entries[ix] = System.Drawing.Color.FromArgb((int)Alpha, (int)Intensity, (int)Intensity, (int)Intensity);
            }
            bitmap.Palette = palette;
            #endregion


            #region//回调函数保存图像功能
            if (bSaveImg)
            {
                //使用bitmap自带函数保存
                string strtime = DateTime.Now.ToString("yyyyMMddhhmmssfff");
                string saveimagepath = pImgFileDir  +"\\"+ strtime + ".jpg";
                bitmap.Save(saveimagepath, System.Drawing.Imaging.ImageFormat.Bmp);

                //使用opencv进行保存图像
                if (mBufferFilled.PixelFormat == "Mono8")
                {
                    OpenCvSharp.Mat matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                           
                    matgray.SaveImage("opencv_image.png");
                    Cv2.ImWrite("opencvcv_image_Clone.png", matgray);
                }                      
                bSaveImg = false;//变量控制单次保存图像
            }
            #endregion

            #region//对灰度图像进行直方图均衡化
            OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
            Mat Qualized = new Mat();
            Cv2.EqualizeHist(Matgray, Qualized); // 对灰度图像进行直方图均衡化
            Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap

            #endregion

            #region//bitmap的图像数据复制pBitmap
            Bitmap clonebitmap = (Bitmap)bmp.Clone();
            BitmapData data = clonebitmap.LockBits(new Rectangle(0, 0, clonebitmap.Width, clonebitmap.Height), ImageLockMode.ReadOnly, clonebitmap.PixelFormat);
            clonebitmap.UnlockBits(data);
            pBitmap = clonebitmap;
            #endregion
            #region//将pBitmap图像数据显示在UI界面PictureBox控件上
            prcSource.X = 0;prcSource.Y = 0;
            prcSource.Width = (int)mBufferFilled.Width;prcSource.Height = (int)mBufferFilled.Height;
            System.Drawing.Graphics graph = System.Drawing.Graphics.FromHwnd(pictureBoxA.Handle);
            graph.DrawImage(pBitmap, prcPBox, prcSource, GraphicsUnit.Pixel);
            #endregion

            clonebitmap.Dispose(); //清除临时变量clonebitmap所占内存空间
            mBufferFilled.QueueBuffer();

        }
    }
    catch (BGAPI2.Exceptions.IException ex)
    {
        {
            string str2;
            str2 = string.Format("ExceptionType:{0}! ErrorDescription:{1} in function:{2}", ex.GetType(), ex.GetErrorDescription(), ex.GetFunctionName());
            MessageBox.Show(str2);
        }
    }
    return;
}

3.OpenCV直方图算法进行图像增强

cv2.EqualizeHist是一种直方图均衡化方法,可以用于提升图像的对比度和亮度。

它可以将一幅灰度图像的直方图变得更加平坦,从而增强图像的细节和局部对比度。

使用该方法需要将图像先转换为灰度图像,然后使用cv2.equalizeHist函数对灰度图像进行处理。

函数返回处理后的图像。

C#调用代码如下所示:

#region//对灰度图像进行直方图均衡化
OpenCvSharp.Mat Matgray = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);//用bitmap转换为mat                 
Mat Qualized = new Mat();
Cv2.EqualizeHist(Matgray, Qualized); // 对灰度图像进行直方图均衡化
Bitmap bmp = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(Qualized);//用mat转换为bitmap

呈现效果如下所示:
(未使用直方图均衡化图像算法)
未使用直方图均衡化图像算法
(使用直方图均衡化图像算法)
在这里插入图片描述

Baumer工业相机使用图像算法增强图像的优势

  1. 提高图像质量: 随着图像算法的使用,工业相机可以产生高度详细和清晰的图像。这些算法可以减少噪音,突出边缘,并增加对比度,以产生更好的图像质量。

  2. 增加准确性:图像算法也可以提供高度准确的测量和数据。通过使用边缘检测和模式识别等图像分析技术,工业相机可以更精确地识别和测量物体。

  3. 成本效益: 通过提高图像质量和准确性,工业相机可以减少对人工检查的需求,从而降低与质量控制和产品拒绝相关的成本。

  4. 效率提高: 通过使图像分析过程自动化,工业相机可以提高产量,减少周期时间,使生产线更有效率。

  5. 更好的决策: 随着图像质量和准确性的提高,工业相机可以为决策者提供高度详细和可靠的数据,使他们能够对生产过程和质量控制做出更明智的决定。

Baumer工业相机使用图像算法增强图像的行业应用

带有图像算法的工业相机被广泛应用于各个行业,用于增强图像,以提高产品质量、安全和效率。以下是其应用的一些例子:

  1. 制造业: 具有图像算法的工业相机用于检查装配线的缺陷,检查产品的质量,并确保遵守安全标准。它们还可用于在制造过程中检查零件,这有助于及早发现缺陷,防止昂贵的生产延误。

  2. 汽车行业: 在汽车行业,具有图像算法的工业相机被广泛用于安全检查,检测汽车零部件的缺陷,并确保司机和乘客的安全。它们还可用于事故发生后的损害评估。

  3. 航空航天: 工业相机在航空航天工业中用于检查卫星、火箭和其他航天器在组装期间和组装后的部件。图像算法可以帮助检测关键部件的缺陷和故障,以确保宇航员的安全和太空任务的成功。

  4. 医疗:具有图像算法的工业相机被用于检测和诊断疾病和医疗状况的医疗应用。它们还被用于医学研究、分析和监测病人的健康。

  5. 农业: 工业相机可用于监测作物的生长,检查农产品的质量,并检测作物的病虫害。图像算法可以帮助早期发现问题,使农民能够采取纠正措施来保护他们的作物。

在所有这些行业中,使用带有图像算法的工业相机大大改善了图像分析的效率和准确性,从而提高了产品质量,增加了安全性,并降低了成本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何能基于prompt tuning v2训练好一个垂直领域的chatglm-6b

如何能基于prompt tuning v2训练好一个垂直领域的chatglm-6b 首先先抛出一个问题&#xff0c;是不是所有的文本生成数据集都适合用chatglm 6B的模型进行微调。那我们今天找到了三个数据集&#xff0c;分别为百科数据集、法律问答数据集、论文题目与摘要数据集、专利名称与专利…

stable-diffusion-webui-colab部署记录

stable-diffusion-webui-colab 该模型可以在网上云端部署stable-diffusion&#xff0c;减少本地部署的繁琐步骤降低配置要求的依赖。 一、进入stable-diffusion-webui-colab 1.网址&#xff1a;https://github.com/camenduru/stable-diffusion-webui-colab 在分支中选择driv…

java 坐标体系与绘图

目录 一、坐标体系 1.像素 : 2.坐标系 : 二、绘图 1.机制 : 2.实例 : 3.原理 : 4.常用绘图方法 : 1 setColor(Color c) : 设置画笔颜色 2 drawLine(int x1, int y1, int x2, int y2) : 画直线 3 drawRect(int x, int y, int width, int height) : 画矩形边框 4 fillRec…

【密码学复习】第六讲 HASH函数和MAC(三)

H是一个Hash函数 K表示密钥 B表示计算消息摘要时消息分块的字节长度&#xff08;对MD5和SHA-1是512比特,64字节&#xff09; L表示消息摘要按字节计算的长度&#xff08;对MD5是16字节&#xff09; ipad表示0x36重复B次&#xff0c;opad表示0x5c重复B次。 K可以…

腾讯云轻量服务器价格表(2023版)

2023腾讯云轻量应用服务器2核2G4M带宽88元一年、2核4G6M带宽159元/年、4核8G10M优惠价425元、8核16G14M价格1249、16核32G20M服务器2499元一年&#xff0c;今天分享2023腾讯云服务器配置及精准报价。 腾讯云轻量应用服务器优惠价格表 腾讯云服务器分为轻量应用服务器和云服务器…

Games106学习记录第一课

本文地址&#xff1a;https://blog.csdn.net/t163361/article/details/130139998 最近准备申请新星创作者&#xff0c;需要2000个粉丝关注&#xff0c;觉得文章有用的&#xff0c;请点一下左侧边栏的关注&#xff0c;谢谢。 前段时间看到Games106课程&#xff0c;讲的是流水线…

【天梯赛—不想坑队友系列】L1-002 打印沙漏(java)

题目链接 PTA | 程序设计类实验辅助教学平台 本题要求你写个程序把给定的符号打印成沙漏的形状。例如给定17个“*”&#xff0c;要求按下列格式打印 ************ *****所谓“沙漏形状”&#xff0c;是指每行输出奇数个符号&#xff1b;各行符号中心对齐&#xff1b;相邻两行符…

c/c++:2进制、8进制、10进制、16进制和进制之间的转换,c语言输出匹配格式%

c/c&#xff1a;2进制、8进制、10进制、16进制和进制之间的转换&#xff0c;c语言输出匹配格式% 2022找工作是学历、能力和运气的超强结合体&#xff0c;遇到寒冬&#xff0c;大厂不招人&#xff0c;此时学会c的话&#xff0c; 我所知道的周边的会c的同学&#xff0c;可手握10…

Linux主机用WordPress搭建网站

文章目录一、搭建过程1.1、切换到超户1.2、更新1.3、安装一些包1.4、安装wordpress1.5、配置MariaDB1.6、创建WordPress数据库1.7、配置WordPress1.8、登录WordPress1.9、安装phpMyAdmin一、搭建过程 1.1、切换到超户 sudo su1.2、更新 apt-get update -y1.3、安装一些包 a…

我在windows10下,使用CMake gui 编译krita源码

系列文章目录 文章目录系列文章目录前言一、krita编译说明二、使用步骤前言 我在windows10下&#xff0c;使用CMake gui 编译krita源码 where is the source code:E:/krita-dev/krita where to build the binaries:E:/krita-dev/krita_camke current generator:MinGW Makefile…

成为程序员后才知道的6件事,第5点看完很心酸!

曾几时&#xff0c;总觉得IT精英外表光鲜亮丽&#xff0c;尤其是程序员咔咔咔打代码&#xff0c;月入几个w&#xff0c;不光挣得多&#xff0c;上班期间还能玩电脑游戏。但是&#xff0c;真正当了程序员之后&#xff0c;OMG!我再也不这样想了&#xff01;好多事都是当了程序员才…

【C语言深入】带你了解C语言中的可变参数列表

【C语言深入】带你了解C语言中的可变参数列表一、可变参数函数的使用方式1、使用方式2、自定义可变把参数函数2.1、三个宏一个类型2.2、实现方式二、可变参数列表的原理1、va_start1.1、_ADDRESSOF1.2、关于临时拷贝的一个小知识点1.3、_INTSIZEOF2、va_arg3、va_end一、可变参…

23种设计模式总结(大白话,适合小白)

文章目录什么是设计模式&#xff1f;设计模式的分类创建型模式创建型类类型工厂方法模式创建型对象型抽象工厂模式生成器模式原型模式单例模式结构型模式结构型类类型适配器模式结构型对象型桥接模式组合模式装饰器模式外观模式享元模式代理模式行为型模式行为型对象型命令模式…

【C++PrimerPlus】第五章 循环和关系表达式

文章目录5.1 for循环5.1.1 for循环的组成部分5.1.2 回到for循环5.1.3 修改步长5.1.4 使用for循环访问字符串5.1.5 递增运算符 ()和递减运算符(--)5.1.6 副作用和顺序点5.1.7 前缀格式与后缀格式5.1.8 递增/递减和指针5.1.9 组合赋值运算符5.1.10 复合语句![](https://img-blog.…

Qt Quick - ToolTip

Qt Quick - ToolTip使用总结一、概述二、附带的ToolTip三、延迟和超时四、自定义ToolTip五、定制化一、概述 ToolTip 其实就是ToolTip&#xff0c;所谓ToolTip其实就是一段简短的文本&#xff0c;告知用户控件的功能。它通常置于父控件之上或之下。提示文本可以是任何富文本格…

常用异常检测模型的应用

常用异常检测模型的应用 描述 异常数据检测不仅仅可以帮助我们提高数据质量&#xff0c;同时在一些实际业务中&#xff0c;异常数据往往包含有价值的信息&#xff0c;如异常交易、网络攻击、工业品缺陷等&#xff0c;因此异常检测也是数据挖掘的重要手段。常用的异常检测模型…

【通过Cpython3.9源码看看python字符串拼接:“+”为什么比join低效】

基本说明 Python字符串拼接中&#xff0c;使用join()方法比运算符更高效&#xff0c;主要原因在于字符串对象的不可变性和内存分配策略。 首先&#xff0c;我们要知道Python字符串是不可变的对象。这意味着&#xff0c;每次使用运算符进行字符串拼接时&#xff0c;Python需要…

Vue2-黑马(四)

目录&#xff1a; &#xff08;1&#xff09;axios-响应格式 &#xff08;2&#xff09;axios-拦截器 &#xff08;3&#xff09;vue2-条件渲染 &#xff08;4&#xff09;vue2-列表渲染 &#xff08;1&#xff09;axios-响应格式 下面看axios的返回响应对象的内部组成 后…

【grpc02】安装protobuf和protoc

目录 Windows环境 下载通用编译器 配置环境变量 安装go专用的protoc的生成器 GoLang中安装插件 如何使用protobuf呢&#xff1f; Mac环境 Protoc安装 Protoc-gen-go的安装 Windows环境 下载通用编译器 下载地址&#xff1a;v3.20.1 Releases protocolbuffers/pr…

【优化算法】使用遗传算法优化MLP神经网络参数(TensorFlow2)

文章目录任务查看当前的准确率情况使用遗传算法进行优化完整代码任务 使用启发式优化算法遗传算法对多层感知机中中间层神经个数进行优化&#xff0c;以提高模型的准确率。 待优化的模型&#xff1a; 基于TensorFlow2实现的Mnist手写数字识别多层感知机MLP # MLP手写数字识别…