【ES】数据同步集群

news2024/11/17 23:42:36

【ES】数据同步&集群

  • 3.数据同步
    • 3.1.思路分析
      • 3.1.1.同步调用
      • 3.1.2.异步通知
      • 3.1.3.监听binlog
      • 3.1.4.选择
    • 3.2.实现数据同步
      • 3.2.1.思路
      • 3.2.2.导入demo
      • 3.2.3.声明交换机、队列
        • 1)引入依赖
        • 2)声明队列交换机名称
        • 3)声明队列交换机
      • 3.2.4.发送MQ消息
      • 3.2.5.接收MQ消息
  • 4.集群
    • 4.1.搭建ES集群
    • 4.2.集群脑裂问题
      • 4.2.1.集群职责划分
      • 4.2.2.脑裂问题
      • 4.2.3.小结
    • 4.3.集群分布式存储
      • 4.3.1.分片存储测试
      • 4.3.2.分片存储原理
    • 4.4.集群分布式查询
    • 4.5.集群故障转移


3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步


3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步


3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能


3.2.2.导入demo

导入课前资料提供的hotel-admin项目:

运行后,访问 http://localhost:8099

其中包含了酒店的CRUD功能:

3.2.3.声明交换机、队列

MQ结构如图:


1)引入依赖

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

<!--amqp-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

2)声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

package cn.itcast.hotel.constatnts;

    public class MqConstants {
    /**
     * 交换机
     */
    public final static String HOTEL_EXCHANGE = "hotel.topic";
    /**
     * 监听新增和修改的队列
     */
    public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
    /**
     * 监听删除的队列
     */
    public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
    /**
     * 新增或修改的RoutingKey
     */
    public final static String HOTEL_INSERT_KEY = "hotel.insert";
    /**
     * 删除的RoutingKey
     */
    public final static String HOTEL_DELETE_KEY = "hotel.delete";
}

3)声明队列交换机

在hotel-demo中,定义配置类,声明队列、交换机:

package cn.itcast.hotel.config;

import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MqConfig {
    @Bean
    public TopicExchange topicExchange(){
        return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
    }

    @Bean
    public Queue insertQueue(){
        return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
    }

    @Bean
    public Queue deleteQueue(){
        return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
    }

    @Bean
    public Binding insertQueueBinding(){
        return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
    }

    @Bean
    public Binding deleteQueueBinding(){
        return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
    }
}

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:


3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);

void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {
    try {
        // 1.准备Request
        DeleteRequest request = new DeleteRequest("hotel", id.toString());
        // 2.发送请求
        client.delete(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

@Override
public void insertById(Long id) {
    try {
        // 0.根据id查询酒店数据
        Hotel hotel = getById(id);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);

        // 1.准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
        // 2.准备Json文档
        request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
        // 3.发送请求
        client.index(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

package cn.itcast.hotel.mq;

import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class HotelListener {

    @Autowired
    private IHotelService hotelService;

    /**
     * 监听酒店新增或修改的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
    public void listenHotelInsertOrUpdate(Long id){
        hotelService.insertById(id);
    }

    /**
     * 监听酒店删除的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
    public void listenHotelDelete(Long id){
        hotelService.deleteById(id);
    }
}

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1.搭建ES集群

参考课前资料的文档:

其中的第四章节:


4.2.集群脑裂问题


4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:


4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

此时,node2和node3认为node1宕机,就会重新选主:

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。


4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户


4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?


4.3.1.分片存储测试

插入三条数据:

测试可以看到,三条数据分别在不同分片:

结果:


4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户


4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

宕机后的第一件事,需要重新选主,例如选中了node2:

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:


学习笔记 from 黑马程序员

By – Suki 2023/4/9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/419556.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决macOS IntelliJ IDEA 卡顿问题

写在前面的话1&#xff1a;我在撰写这篇博客时候&#xff0c;所用的IntelliJ IDEA版本是IntelliJ IDEA 2022.3.3 (Ultimate Edition)&#xff0c;你需要知道可能对于不同的IntelliJ IDEA版本会有一定的差异 写在前面的话2&#xff1a;如果我这篇博客可以帮助到你&#xff0c;请…

国内可用的 ChatGPT

国内可用的 ChatGPT 替代列表功能和使用顺便推荐列表 https://chatgpt.qdymys.cn/ &#xff1a;三小时只能用10次 https://alllinkai.com/ &#xff1a;体验完&#xff0c;要登录&#xff0c;不推荐 https://gpttalk.live/ &#xff1a;每天限制使用次数 https://chatgpt-c…

深入探讨机器学习中的过拟合现象及其解决方法

1. What❓ 过拟合&#xff08;Overfitting&#xff09;是指在机器学习中&#xff0c;模型在训练集上表现较好&#xff0c;但在测试集或实际应用中表现较差的现象。过拟合发生时&#xff0c;模型过于复杂地学习了训练集中的噪声、异常值或特定模式&#xff0c;从而导致对新样本…

限流:计数器、漏桶、令牌桶 三大算法的原理与实战(史上最全)

限流 限流是面试中的常见的面试题&#xff08;尤其是大厂面试、高P面试&#xff09; 注&#xff1a;本文以 PDF 持续更新&#xff0c;最新尼恩 架构笔记、面试题 的PDF文件&#xff0c;请到文末《技术自由圈》公号获取 为什么要限流 简单来说&#xff1a; 限流在很多场景中用来…

教程 | 近红外数据的预处理和平均(上)

前言 近红外光谱(NIRS)是一种测量流经传感器所在组织的血液中氧合水平的方法。它基于这样一个事实&#xff0c;即含氧血红蛋白和脱氧血红蛋白具有不同的吸收光谱&#xff0c;因此你会看到它有不同的颜色。大多数近红外系统在每个光源光电二极管发射2个波长的光&#xff0c;通常…

【记录】ORB_SLAM2 例程(README文件里的单双目RDB-D、ROS、AR、外接摄像头、点云)

第一次跑 ORB_SLAM2&#xff0c;记录一下一、普通环境0.build.sh 遇到的问题&#xff08;1&#xff09;usleep&#xff08;2&#xff09;AlignedBit1.单目、TUM数据集2.双目、KITTI数据集3.RGB-D、TUM数据集二、ROS0.build_ros.sh 遇到的问题&#xff08;1&#xff09;rospack …

【C++】结构体应用案例 1

目录 1、缘起 2、案例描述 3、案例分析 4、代码清单 1 5、代码清单 2 6、总结 1、缘起 最近学习完了 C 语言的结构体相关知识点&#xff0c;如 结构体数组&#xff0c;结构体指针&#xff0c;结构体嵌套结构体 和 结构体做函数参数。本篇博客围绕着这些知识点&#xff0c…

【华为机试真题详解JAVA实现】—Sudoku

目录 一、题目描述 二、解题代码 一、题目描述 问题描述:数独(Sudoku)是一款大众喜爱的数字逻辑游戏。玩家需要根据9X9盘面上的已知数字,推算出所有剩余空格的数字,并且满足每一行、每一列、每一个3X3粗线宫内的数字均含1-9,并且不重复。 例如: 输入 输出

SpringCloud学习-实用篇02

以下内容的代码可见&#xff1a;SpringCloud_learn/day02 1.Nacos配置管理 之前提到的Nacos是作为注册中心&#xff0c;除此之外它还有配置管理功能 统一配置管理 假设有多个微服务之间有关联&#xff0c;此时修改了某个微服务的配置后其他相关的微服务也需要重启&#xff0c;十…

Javaweb | 过滤器、配置、过滤器链、优先级

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 过滤器 概念 过滤器&#xff08;Filter&#xff09;是处于客户端与服务器目标资源之间的一道过滤技术 用户的请求和响应都需要经过过滤器 过滤器作用 执行地位在Servl…

C++初阶 -1- C++入门part2

文章目录6.引用什么是引用&#xff1f;引用的使用引用的应用传值、传引用效率比较权限引用和指针的区别⭐7.内联函数8.auto关键字9.基于范围的for循环10.指针空值——nullptr6.引用 什么是引用&#xff1f; “别名” int a 0; int& b 0;&#x1f446;即 地址为0x00000…

【linux】:模拟文件基本操作以及文件在磁盘中如何存储的学习

文章目录 前言一、模拟C库文件操作二、磁盘文件总结前言 经过我们上一篇对linux系统文件操作的学习想必我们已经会使用系统文件接口了&#xff0c;今天我们就用系统文件接口来封装一个像C语言库那样的文件操作函数的函数来加深我们对文件操作的学习。 一、模拟C库文件操作 首…

通过Milo实现的OPC UA客户端连接并订阅Prosys OPC UA Simulation Server模拟服务器

背景 前面我们搭建了一个本地的 PLC 仿真环境&#xff0c;并通过 KEPServerEX6 读取 PLC 上的数据&#xff0c;最后还使用 UAExpert 作为 OPC 客户端完成从 KEPServerEX6 这个OPC服务器的数据读取与订阅功能&#xff1a;SpringBoot集成Milo库实现OPC UA客户端&#xff1a;连接…

新一代信息技术赋能,安科瑞搭建智慧水务体系的新思路

随着新时期治水方针的逐步落实&#xff0c;水利现代化、智能化建设已开启&#xff0c;物联网、图像识别、数字孪生等新技术的成熟&#xff0c;也为智慧水务体系的搭建提供了技术保障&#xff0c;新时代治水新思路正逐步得到落实。本文对智慧水务的总体架构与包含的建设内容进行…

Qt第六十二章:图标库QtAwesome的使用

目录 一、安装依赖 二、主页 三、文档 四、案例 1、图标 2、样式 3、alpha 通道 4、 多图标堆叠 5、动画 6、字体 五、系列 1、msc系列 2、fa5系列&#xff08;选择free栏&#xff09; 3、fa5s系列&#xff08;选择free栏&#xff09; 4、fa5b系列&#xff08;选…

由libunifex来看Executor的任务构建

前言 之前的一篇文章讲述了future的优缺点&#xff0c;以及future的组合性&#xff0c;其中也讲述了构建任务DAG一些问题&#xff0c;同时给出了比较好的方案则是Executor。 Executor还未进入标准&#xff08;C23&#xff09;&#xff0c;Executor拥有惰性构建及良好的抽象模型…

尚硅谷大数据技术Zookeeper教程-笔记03【源码解析-算法基础】

视频地址&#xff1a;【尚硅谷】大数据技术之Zookeeper 3.5.7版本教程_哔哩哔哩_bilibili 尚硅谷大数据技术Zookeeper教程-笔记01【Zookeeper(入门、本地安装、集群操作)】尚硅谷大数据技术Zookeeper教程-笔记02【服务器动态上下线监听案例、ZooKeeper分布式锁案例、企业面试真…

多模态大模型的发展、挑战与应用

多模态大模型的发展、挑战与应用 2023/04/15 研究进展 随着 AlexNet [1] 的出现&#xff0c;过去十年里深度学习得到了快速的发展&#xff0c;而卷积神经网络也从 AlexNet 逐步发展到了 VGG [2]、ResNet [3]、DenseNet [4]、HRNet [5] 等更深的网络结构。研究者们发现&#…

用vscode运行Java程序初体验

最近开始学习Java编程了&#xff0c;以前学习过C、C 、Python&#xff0c;主要用微软的visual studio code来运行python程序&#xff0c;于是就尝试了用vscode来运行java代码&#xff0c;记录一下使用的经验&#xff0c;帮助大家少走弯路。 安装了Java的集成编辑器IDE "Ec…

c++STL之关联式容器

目录 set容器 set的默认构造 set的插入与迭代器 set集合的元素排序 set集合的初始化及遍历 从小到大(默认情况下) 从大到小 仿函数 set的查找 pair的使用 multiset容器 map和multimap容器 map的插入与迭代器 map的大小 map的删除 map的查找 关联式容器&#…