NLP / LLMs中的Temperature 是什么?

news2025/1/15 17:36:34

ChatGPT, GPT-3, GPT-3.5, GPT-4, LLaMA, Bard等大型语言模型的一个重要的超参数

大型语言模型能够根据给定的上下文或提示生成新文本,由于神经网络等深度学习技术的进步,这些模型越来越受欢迎。可用于控制生成语言模型行为的关键参数之一是Temperature 参数。在本文中,我们将讨论语言生成模型中Temperature 参数的作用,以及它如何影响生成文本的质量。

Temperature 在模型中的作用

Temperature 是一个超参数,可用于控制生成语言模型中生成文本的随机性和创造性。它用于调整模型的softmax输出层中预测词的概率。温度参数定义为在应用 softmax 函数之前用于调整 logits 的比例因子的倒数。

当Temperature 设置为较低的值时,预测词的概率会变尖锐,这意味着选择最有可能的词的概率更高。这会产生更保守和可预测的文本,因为模型不太可能生成意想不到或不寻常的词。另一方面,当Temperature 设置为较高值时,预测词的概率被拉平,这意味着所有词被选择的可能性更大。这会产生更有创意和多样化的文本,因为模型更有可能生成不寻常或意想不到的词。

温度参数通常设置为 0.1 到 1.0 之间的值,具体取决于生成文本中所需的随机性和创造性水平。温度值为 1.0 对应于标准 softmax 函数,其中预测词的概率未按比例缩放。

一般来说,Temperature 越低,GPT-3越有可能选择出现概率较高的单词。当我们想要GPT-3解释概念时,它特别有用,因为答案只有一个。如果想要产生想法或完成一个故事,Temperature 设置的更大会给我们带来更多的多样性。

比如说以下提示:

Prompt: “The quick brown fox”

Temperature = 0.1:

“The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog.”

Temperature = 0.5:

“The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away.”

Temperature = 1.0:

“The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going.”

可以看到,Temperature 对生成文本的质量和创造性有重大影响。低值生成更可预测和重复的文本,而高值生成更多样化和创造性的文本。

Temperature 的数学原理解释

神经网络的输出是词汇表中每个单词(实际上是标记)的概率分布,告诉它这些单词中任何一个可能跟随输入文本的可能性。

该概率分布由softmax函数计算:

如果将Temperature 参数(T)添加到softmax函数,则公式如下:

更深入的解释Temperature 参数:

如果当T趋于无穷时会发生什么。每个x_i / T都会趋于0,从而得到一个均匀分布。也就是说概率分布变得更 “平”, 这会导致结果更随机。

当T很小(比如0.1)时会发生什么。每个x_i / T之间的差异变得更加明显(例如5比1变成50比10),这样概率分布变得“更尖”,也就是说结果会更确定。

总结

Temperature 参数是语言生成模型中一个重要的超参数,可用于控制生成文本的随机性和创造性。通过调整该参数,可以生成更保守或更有创意的文本,虽然Temperature 参数是生成高质量文本的强大工具,但需要注意的是,它并不能提高生成语言模型的性能。因为生成文本的质量高度依赖于训练数据的质量、模型的架构以及其他超参数,如学习率和批处理大小。在设计和训练生成语言模型时,必须考虑所有这些因素。

另外就是Temperature 参数可能并不总是提高生成文本的质量,特别是在训练数据有限或有噪声的情况下。在这种情况下,其他技术,如数据增强、正则化或迁移学习可能更有效地提高模型的性能。

最后Temperature 可以控制语言生成模型的行为。通过适当的调整,可以得到我们期望的结果。比如说生成更确定的答案可以降低该值,而生成更发散和创造性的答案可以提高该值,所以尝试一下不同的值,看看这些更改对不的提示有什么影响,这会帮助我们更好的获得想要的结果。

https://avoid.overfit.cn/post/04f2376489184f53a6ae9c5d4b43dc97

作者:Lazy Programmer

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/419442.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[译]自下而上认识Elasticsearch

注意:原文发表时间是13年,所以实现有可能与新版不一致. 原文地址:https://www.elastic.co/cn/blog/found-elasticsearch-from-the-bottom-up Introduction 在本系列文章中,我们从一个新的视角来看ElasticSearch.我们将从下往上,从抽象的底层实现到用户可见层,我们在向上移动的…

【JaveEE】网络编程之TCP套接字、UDP套接字

目录 1.网络编程的基本概念 1.1为什么需要网络编程 1.2服务端与用户端 1.3网络编程五元组 1.4套接字的概念 2.UDP套接字编程 2.1UDP套接字的特点 2.2UDP套接字API 2.2.1DatagramSocket类 2.2.2DatagramPacket类 2.2.3基于UDP的回显程序 2.2.4基于UDP的单词查询 …

免疫力低会怎么样 什么情况会导致免疫降低

都说免疫力是很重要的,它会我们健康的第一道防线,但是当免疫力降低的时候,会出现哪些情况?为什么免疫力会降低? 免疫力是人体的防御系统,就像是维持人体正常运转的军队。免疫力的高低,一定程度上…

再探pytorch的Dataset和DataLoader

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052本文从分类、检测、分割三大任务的角度来剖析pytorch得dataset和dataloader源码,可以让初学者深刻理解每个参数的由来和使用,并轻松自定义dataset。思考&#x…

SQL LIMIT

SQL LIMIT SQL LIMIT子句简介 要检索查询返回的行的一部分,请使用LIMIT和OFFSET子句。 以下说明了这些子句的语法: SELECT column_list FROMtable1 ORDER BY column_list LIMIT row_count OFFSET offset;在这个语法中, row_count确定将返…

Html5版贪吃蛇游戏制作(经典玩法)

回味经典小游戏,用Html5做了个贪吃蛇的小游戏,完成了核心经典玩法的功能。 游戏可以通过电脑的键盘“方向键”控制,也可以点击屏幕中的按钮进行控制。(支持移动端哈) 点击这里试玩 蛇的移动是在18 x 18的格子中进行移…

sqoop数据导入

创建数据库 mysql全表数据导入hdfs mysql查询数据导入hdfs mysql指定列导入hdfs 使用查询条件关键字将mysql数据导入hdfs mysql数据导入hive 创建数据库 hive中创建user表 create table users( id bigint, name string ) row format delimited fields terminated by &…

数据结构 - 归并排序 | C

思路分析 什么是归并&#xff1f; 示例&#xff1a;&#xff08;归并后的结果copy到原数组&#xff09; 逻辑&#xff1a; if (a[begin1] < a[begin2]) {tmp[i] a[begin1];} else {tmp[i] a[begin2];} 归并排序 分解到“有序”再归并 递归 int middle (left righ…

哈希——unordered系列关联式容器

目录 unordered系列关联式容器 概念 unordered_map 无序去重 operator[] unordered_set 无序去重 OJ练习题 重复n次的元素 两个数组的交集 两个数的交集二 底层结构 概念 哈希冲突 闭散列 结点的定义 扩容 字符串取模 插入 查找 删除 闭散列完整代码 开…

安卓远程控制软件哪个好用

如果您曾希望将个人电脑放在口袋里&#xff0c;那么您可能只需要安卓远程访问软件。 没有远程访问应用程序&#xff1a;使用和控制计算机的唯一方法是坐在计算机前并手动输入命令。 使用远程访问应用程序&#xff1a;您可以在世界任何地方通过 Internet 连接从您的安卓平板电…

【30天python从零到一】---第七天:列表和元组

&#x1f34e; 博客主页&#xff1a;&#x1f319;披星戴月的贾维斯 &#x1f34e; 欢迎关注&#xff1a;&#x1f44d;点赞&#x1f343;收藏&#x1f525;留言 &#x1f347;系列专栏&#xff1a;&#x1f319; Python专栏 &#x1f319;请不要相信胜利就像山坡上的蒲公英一样…

计算机组成原理---第五章中央处理器

&#xff08;一&#xff09;CPU 的功能和组成 CPU 的功能 Ⅰ 概述&#xff1a;当程序指令装入内存储器后&#xff0c;CPU 用来自动完成取指令和执行指令的任务。 Ⅱ CPU 的功能&#xff1a;①指令控制 ②操作控制 ③时间控制 ④数据加工 2.CPU 的基本组成 CPU 的基本部分为运…

【论文阅读】[JBHI] VLTENet、[ISBI]

[JBHI] VLTENet 论文连接&#xff1a;VLTENet: A Deep-Learning-Based Vertebra Localization and Tilt Estimation Network for Automatic Cobb Angle Estimation | IEEE Journals & Magazine | IEEE Xplore Published in: IEEE Journal of Biomedical and Health Infor…

9.1 相关分析

学习目标&#xff1a; 如果我要学习相关分析&#xff0c;我可能会按照以下步骤进行&#xff1a; 确定学习相关分析的目的和应用场景&#xff0c;例如研究两个变量之间的相关性、了解变量之间的关系、预测未来趋势等。学习相关分析的基本概念和原理&#xff0c;包括相关系数、…

VS——Visual Studio 2022 社区版——快捷键

VS——Visual Studio 2022 社区版——快捷键官网简介PDF完整PDF编辑编辑&#xff1a;常用快捷方式菜单栏 会显示 快捷键功能搜索大纲 折叠 展开Ctrl M M 切换官网 https://learn.microsoft.com/zh-cn/visualstudio/ide/default-keyboard-shortcuts-in-visual-studio?viewvs-2…

数据结构 — 【排序算法】

目录 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3 常见的排序算法 2.常见排序算法的实现 2.1 插入排序 直接插入排序 希尔排序 2.2 选择排序 直接选择排序 堆排序 2.3 交换排序 冒泡排序 快速排序 2.4 归并排序 2.5 非比较排序 计数排序 基数排序 3.排序算法…

【Unity入门】12.MonoBehaviour事件函数

【Unity入门】MonoBehaviour事件函数 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity入门系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;常用的事件函数 &#xff08;1&#xff09;start和update方法 之前我们写的脚本&#xff0c;会默认帮助…

4.3 分部积分法

学习目标&#xff1a; 学习分部积分法&#xff0c;我可能会按照以下步骤进行&#xff1a; 理解分部积分法的基本思想。分部积分法是一种通过对积分式中的不同部分进行乘积分解&#xff0c;然后对乘积中的某一项进行积分&#xff0c;对另一项进行微分&#xff0c;从而将原积分式…

NumPy 秘籍中文第二版:五、音频和图像处理

原文&#xff1a;NumPy Cookbook - Second Edition 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 在本章中&#xff0c;我们将介绍 NumPy 和 SciPy 的基本图像和音频&#xff08;WAV 文件&#xff09;处理。 在以下秘籍中&#xff0c;我们将使用 NumPy 对声音和图像进…

叮咚买菜基于 Apache Doris 统一 OLAP 引擎的应用实践

导读&#xff1a; 随着叮咚买菜业务的发展&#xff0c;不同的业务场景对数据分析提出了不同的需求&#xff0c;他们希望引入一款实时 OLAP 数据库&#xff0c;构建一个灵活的多维实时查询和分析的平台&#xff0c;统一数据的接入和查询方案&#xff0c;解决各业务线对数据高效实…