系列文章目录
系列文章目录
spark第一章:环境安装
spark第二章:sparkcore实例
spark第三章:工程化代码
spark第四章:SparkSQL基本操作
spark第五章:SparkSQL实例
spark第六章:SparkStreaming基本操作
spark第七章:SparkStreaming实例
文章目录
- 系列文章目录
- 系列文章目录
- 前言
- 一、环境准备
- 1.pox修改
- 2.文件准备
- 3.数据准备
- 二、项目案例
- 1.需求一:广告黑名单
- 2.需求二:广告点击量实时统计
- 3.需求三:最近一小时广告点击量
- 总结
前言
今天我们来完成spark的最后一次实验案例.
一、环境准备
1.pox修改
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.2.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.2.3</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.47</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.2.3</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.2.3</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.2.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.14.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.alibaba/druid -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.10</version>
</dependency>
这是完整的pom代码,查缺补漏吧.
2.文件准备
为了不要和之前的项目混淆,我重建了一个包
3.数据准备
我们通过代码发送数据到kafka来生产数据,然后在从另一端消费数据进行分析.
每条数据有五个字段,其中包括.
时间(用时间戳代替)
地区
城市
用户
广告.
MockData.scala
package com.atguigu.bigdata.spark.streaming.exp
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import java.util.Properties
import scala.collection.mutable.ListBuffer
import scala.util.Random
object MockData {
def main(args: Array[String]): Unit = {
//生成模拟数据
//格式 : timestamp area city userid adid
//含义 : 时间戳 区域 城市 用户 广告
// 创建配置对象
val prop = new Properties()
// 添加配置
prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092")
prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](prop)
while (true){
mockdata().foreach(
(data: String) =>{
val record = new ProducerRecord[String,String]("atguigu",data)
producer.send(record)
}
)
Thread.sleep(3000)
}
}
def mockdata(): ListBuffer[String] ={
val list: ListBuffer[String] = ListBuffer[String]()
val areaList: ListBuffer[String] = ListBuffer[String]("华北", "华东", "华南")
val cityList: ListBuffer[String] = ListBuffer[String]("北京", "上海", "深圳")
for (_ <-1 to 30){
val area: String = areaList(new Random().nextInt(3))
val city: String = cityList(new Random().nextInt(3))
val userid: Int = new Random().nextInt(6)+1
val adid: Int = new Random().nextInt(6)+1
list.append(s"${System.currentTimeMillis()} $area $city $userid $adid")
}
list
}
}
此处用的是之前创建的atguigu主题,如果删除了,在创建一下.
为了测试生产的数据,我们先简单消费一下,直接打印一下.
req1.scala
package com.atguigu.bigdata.spark.streaming.exp
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object req1 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStream")
val ssc = new StreamingContext(sparkConf,Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)
)
kafkaDataDS.map(_.value()).print()
ssc.start()
ssc.awaitTermination()
}
}
在集群中开启zookpeer和kafka,然后进行数据消费
出现时间戳后开始生产数据.
当开始打印数据后,就代码我们整个流程没有问题,接下来我们对数据进行处理.
二、项目案例
1.需求一:广告黑名单
实现实时的动态黑名单机制:将每天对某个广告点击超过 100 次的用户拉黑。
注:黑名单保存到 MySQL 中。
MySQL建表
我直接新建了一个spark-streaming数据库
建表语句
存放黑名单用户的表
CREATE TABLE black_list (userid CHAR(1) PRIMARY KEY);
存放单日各用户点击每个广告的次数
CREATE TABLE user_ad_count (
dt varchar(255),
userid CHAR (1),
adid CHAR (1),
count BIGINT,
PRIMARY KEY (dt, userid, adid)
);
封装MySQL工具类
JDBCUtil.scala
package com.atguigu.bigdata.spark.streaming.exp.Util
import com.alibaba.druid.pool.DruidDataSourceFactory
import java.sql.{Connection, PreparedStatement}
import java.util.Properties
import javax.sql.DataSource
object JDBCUtil { //初始化连接池
var dataSource: DataSource = init()
//初始化连接池方法
def init(): DataSource = {
val properties = new Properties()
properties.setProperty("driverClassName", "com.mysql.jdbc.Driver")
properties.setProperty("url", "jdbc:mysql://hadoop102:3306/spark-streaming?useUnicode=true&characterEncoding=UTF-8&useSSL=false")
properties.setProperty("username", "root")
properties.setProperty("password", "000000")
properties.setProperty("maxActive", "50")
DruidDataSourceFactory.createDataSource(properties)
}
//获取 MySQL 连接
def getConnection: Connection = {
dataSource.getConnection
}
}
需求实现
req1_BlackList.scala
package com.atguigu.bigdata.spark.streaming.exp
import com.atguigu.bigdata.spark.streaming.exp.Util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.sql.{Connection, PreparedStatement, ResultSet}
import java.text.SimpleDateFormat
import java.util.Date
import scala.collection.mutable.ListBuffer
object req1_BlackList {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStream")
val ssc = new StreamingContext(sparkConf,Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)
)
val adClickData: DStream[AdClickData] = kafkaDataDS.map(
(kafkaData: ConsumerRecord[String, String]) => {
val data: String = kafkaData.value()
val datas: Array[String] = data.split(" ")
AdClickData(datas(0), datas(1), datas(2), datas(3), datas(4))
}
)
//获取统计后的数据
val ds: DStream[((String, String, String), Int)] = adClickData.transform(
(rdd: RDD[AdClickData]) => {
val blackList: ListBuffer[String] = ListBuffer[String]()
val conn: Connection = JDBCUtil.getConnection
val pstat: PreparedStatement = conn.prepareStatement("select userid from black_list")
val rs: ResultSet = pstat.executeQuery()
while (rs.next()) {
blackList.append(rs.getString(1))
}
rs.close()
pstat.close()
conn.close()
//判断用户是否在黑名单中
val filterRDD: RDD[AdClickData] = rdd.filter(
(data: AdClickData) => {
!blackList.contains(data.user)
}
)
filterRDD.map(
(data: AdClickData) => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day: String = sdf.format(new Date(data.ts.toLong))
val user: String = data.user
val ad: String = data.ad
((day, user, ad), 1)
}
).reduceByKey((_: Int) + (_: Int))
}
)
ds.foreachRDD(
(rdd: RDD[((String, String, String), Int)]) =>{
rdd.foreach{
case ((day, user, ad), count)=>{
println((day, user, ad), count)
if (count>=30){
//如果统计数量超过30,将用户拉近黑名单
val conn: Connection = JDBCUtil.getConnection
val pstat: PreparedStatement = conn.prepareStatement(
"""
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATE userid=?
|""".stripMargin)
pstat.setString(1,user)
pstat.setString(2,user)
pstat.executeUpdate()
pstat.close()
conn.close()
}else{
//如果没有超过,点击数量更新
val conn: Connection = JDBCUtil.getConnection
val pstat: PreparedStatement = conn.prepareStatement(
"""
| select *
| from user_ad_count
| where dt =? and userid=? and adid=?
|""".stripMargin)
pstat.setString(1,day)
pstat.setString(2,user)
pstat.setString(3,ad)
val rs: ResultSet = pstat.executeQuery()
if (rs.next()){
//如果存在数据,那么更新
val pstat1: PreparedStatement = conn.prepareStatement(
"""
| update user_ad_count
| set count=count+?
| where dt =? and userid=? and adid=?
|""".stripMargin)
pstat1.setInt(1,count)
pstat1.setString(2,day)
pstat1.setString(3,user)
pstat1.setString(4,ad)
pstat1.executeUpdate()
pstat1.close()
//更新后如果超过,拉进黑名单
val pstat2: PreparedStatement = conn.prepareStatement(
"""
| select *
| from user_ad_count
| where dt =? and userid=? and adid=? and count>=30
|""".stripMargin)
pstat2.setString(1,day)
pstat2.setString(2,user)
pstat2.setString(3,ad)
val rs2: ResultSet = pstat2.executeQuery()
if (rs2.next()){
val pstat3: PreparedStatement = conn.prepareStatement(
"""
|insert into black_list (userid) values (?)
|on DUPLICATE KEY
|UPDATE userid=?
|""".stripMargin)
pstat3.setString(1,user)
pstat3.setString(2,user)
pstat3.executeUpdate()
pstat3.close()
}
rs2.close()
pstat2.close()
}else{
//如果不存在数据,那么新增
val pstat1: PreparedStatement = conn.prepareStatement(
"""
| insert into user_ad_count (dt,userid,adid,count) values (?,?,?,?)
|""".stripMargin)
pstat1.setString(1,day)
pstat1.setString(2,user)
pstat1.setString(3,ad)
pstat1.setInt(4,count)
pstat1.executeUpdate()
pstat1.close()
}
rs.close()
pstat.close()
conn.close()
}
}
}
}
)
ssc.start()
ssc.awaitTermination()
}
//广告点击数据
case class AdClickData(ts:String,area:String,city:String,user:String,ad:String)
}
然后测试一下,还是先消费后生产,先将kafka积压的数据都消费掉,在重新生产.
如果没有开启生产就出现了数据,说明之前kafka有数据积压,我们将数据库的内容清空后,就可以开始生产数据了.
之后刷新数据库,可以发现数据开始不断变化,直到最后一个字段,点击数量超过30,被拉入黑名单.
代码优化
修改工具类
JDBCUtil.scala
package com.atguigu.bigdata.spark.streaming.exp.Util
import com.alibaba.druid.pool.DruidDataSourceFactory
import java.sql.{Connection, PreparedStatement}
import java.util.Properties
import javax.sql.DataSource
object JDBCUtil { //初始化连接池
var dataSource: DataSource = init()
//初始化连接池方法
def init(): DataSource = {
val properties = new Properties()
properties.setProperty("driverClassName", "com.mysql.jdbc.Driver")
properties.setProperty("url", "jdbc:mysql://hadoop102:3306/spark-streaming?useUnicode=true&characterEncoding=UTF-8&useSSL=false")
properties.setProperty("username", "root")
properties.setProperty("password", "000000")
properties.setProperty("maxActive", "50")
DruidDataSourceFactory.createDataSource(properties)
}
//获取 MySQL 连接
def getConnection: Connection = {
dataSource.getConnection
}
//执行 SQL 语句,单条数据插入
def executeUpdate(connection: Connection, sql: String, params: Array[Any]): Int = {
var rtn = 0
var pstmt: PreparedStatement = null
try {
connection.setAutoCommit(false)
pstmt = connection.prepareStatement(sql)
if (params != null && params.length > 0) {
for (i <- params.indices) {
pstmt.setObject(i + 1, params(i))
}
}
rtn = pstmt.executeUpdate()
connection.commit()
pstmt.close()
} catch {
case e: Exception => e.printStackTrace()
}
rtn
}
//判断一条数据是否存在
def isExist(connection: Connection, sql: String, params: Array[Any]): Boolean =
{
var flag: Boolean = false
var pstmt: PreparedStatement = null
try {
pstmt = connection.prepareStatement(sql)
for (i <- params.indices) {
pstmt.setObject(i + 1, params(i))
}
flag = pstmt.executeQuery().next()
pstmt.close()
} catch {
case e: Exception => e.printStackTrace()
}
flag
}
}
req1_BlackList1.scala
package com.atguigu.bigdata.spark.streaming.exp
import com.atguigu.bigdata.spark.streaming.exp.Util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.sql.{Connection, PreparedStatement, ResultSet}
import java.text.SimpleDateFormat
import java.util.Date
import scala.collection.mutable.ListBuffer
object req1_BlackList1 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStream")
val ssc = new StreamingContext(sparkConf,Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)
)
val adClickData: DStream[AdClickData] = kafkaDataDS.map(
(kafkaData: ConsumerRecord[String, String]) => {
val data: String = kafkaData.value()
val datas: Array[String] = data.split(" ")
AdClickData(datas(0), datas(1), datas(2), datas(3), datas(4))
}
)
//获取统计后的数据
val ds: DStream[((String, String, String), Int)] = adClickData.transform(
(rdd: RDD[AdClickData]) => {
val blackList: ListBuffer[String] = ListBuffer[String]()
val conn: Connection = JDBCUtil.getConnection
val pstat: PreparedStatement = conn.prepareStatement("select userid from black_list")
val rs: ResultSet = pstat.executeQuery()
while (rs.next()) {
blackList.append(rs.getString(1))
}
rs.close()
pstat.close()
conn.close()
//判断用户是否在黑名单中
val filterRDD: RDD[AdClickData] = rdd.filter(
(data: AdClickData) => {
!blackList.contains(data.user)
}
)
filterRDD.map(
(data: AdClickData) => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day: String = sdf.format(new Date(data.ts.toLong))
val user: String = data.user
val ad: String = data.ad
((day, user, ad), 1)
}
).reduceByKey((_: Int) + (_: Int))
}
)
ds.foreachRDD(
(rdd: RDD[((String, String, String), Int)]) =>{
//一个分区创建一个连接对象
// rdd.foreachPartition(
// iter=>{
// val conn: Connection = JDBCUtil.getConnection
// iter.foreach{
// case ((day, user, ad), count)=>{
//
// }
// }
// conn.close()
// }
// )
rdd.foreach{
case ((day, user, ad), count)=>{
println((day, user, ad), count)
if (count>=30){
//如果统计数量超过30,将用户拉近黑名单
val conn: Connection = JDBCUtil.getConnection
val sql: String ="""
| insert into black_list (userid) values (?)
| on DUPLICATE KEY
| UPDATE userid=?
|""".stripMargin
JDBCUtil.executeUpdate(conn,sql,Array(user,user))
conn.close()
}else{
//如果没有超过,点击数量更新
val conn: Connection = JDBCUtil.getConnection
val sql0: String ="""
| select *
| from user_ad_count
| where dt =? and userid=? and adid=?
|""".stripMargin
val flg: Boolean = JDBCUtil.isExist(conn, sql0, Array(day, user, ad))
if (flg){
//如果存在数据,那么更新
val sql1: String ="""
| update user_ad_count
| set count=count+?
| where dt =? and userid=? and adid=?
|""".stripMargin
JDBCUtil.executeUpdate(conn,sql1,Array(count,day,user,ad))
//更新后如果超过,拉进黑名单
val sql2: String ="""
| select *
| from user_ad_count
| where dt =? and userid=? and adid=? and count>=30
|""".stripMargin
val flg1: Boolean = JDBCUtil.isExist(conn, sql2, Array(day, user, ad))
if (flg1){
val sql3: String ="""
| insert into black_list (userid) values (?)
| on DUPLICATE KEY
| UPDATE userid=?
|""".stripMargin
JDBCUtil.executeUpdate(conn,sql3,Array(user,user))
}
}else{
//如果不存在数据,那么新增
val sql4: String ="""
|insert into user_ad_count (dt,userid,adid,count) values (?,?,?,?)
|""".stripMargin
JDBCUtil.executeUpdate(conn,sql4,Array(day,user,ad,count))
}
conn.close()
//更新后如果超过,拉进黑名单
}
}
}
}
)
ssc.start()
ssc.awaitTermination()
}
//广告点击数据
case class AdClickData(ts:String,area:String,city:String,user:String,ad:String)
}
效果和之前一样,就不演示了.
2.需求二:广告点击量实时统计
描述:实时统计每天各地区各城市各广告的点击总流量,并将其存入 MySQL。
MySQL建表
CREATE TABLE area_city_ad_count (
dt VARCHAR(255),
area VARCHAR(255),
city VARCHAR(255),
adid VARCHAR(255),
count BIGINT,
PRIMARY KEY (dt,area,city,adid)
);
req2.scala
package com.atguigu.bigdata.spark.streaming.exp
import com.atguigu.bigdata.spark.streaming.exp.Util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.sql.{Connection, PreparedStatement}
import java.text.SimpleDateFormat
import java.util.Date
object req2 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStream")
val ssc = new StreamingContext(sparkConf,Seconds(3))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)
)
val adClickData: DStream[AdClickData] = kafkaDataDS.map(
(kafkaData: ConsumerRecord[String, String]) => {
val data: String = kafkaData.value()
val datas: Array[String] = data.split(" ")
AdClickData(datas(0), datas(1), datas(2), datas(3), datas(4))
}
)
val reduceDS: DStream[((String, String, String, String), Int)] = adClickData.map(
(data: AdClickData) => {
val sdf = new SimpleDateFormat("yyyy-MM-dd")
val day: String = sdf.format(new Date(data.ts.toLong))
val area: String = data.area
val city: String = data.city
val ad: String = data.ad
((day, area, city, ad), 1)
}
).reduceByKey((_: Int) + (_: Int))
reduceDS.foreachRDD(
rdd=>{
rdd.foreachPartition(
iter=>{
val conn: Connection = JDBCUtil.getConnection
val pstat: PreparedStatement = conn.prepareStatement(
"""
| insert into area_city_ad_count (dt ,area,city,adid,count)
| values (?,?,?,?,?)
| on DUPLICATE KEY
| UPDATE count=count+?
|""".stripMargin)
iter.foreach{
case ((day, area, city, ad), sum)=>{
pstat.setString(1,day)
pstat.setString(2,area)
pstat.setString(3,city)
pstat.setString(4,ad)
pstat.setInt(5,sum)
pstat.setInt(6,sum)
pstat.executeUpdate()
}
}
pstat.close()
conn.close()
}
)
}
)
ssc.start()
ssc.awaitTermination()
}
//广告点击数据
case class AdClickData(ts:String,area:String,city:String,user:String,ad:String)
}
还是先消费,后生产,然后查看数据库.
3.需求三:最近一小时广告点击量
一个小时太长了,咱们就做1分钟的.10秒钟统计一次.
req3.scala
package com.atguigu.bigdata.spark.streaming.exp
import com.atguigu.bigdata.spark.streaming.exp.Util.JDBCUtil
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import java.sql.{Connection, PreparedStatement}
import java.text.SimpleDateFormat
import java.util.Date
object req3 {
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkStream")
val ssc = new StreamingContext(sparkConf,Seconds(5))
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop102:9092,hadoop103:9092,hadoop104:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "atguigu",
"key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
)
val kafkaDataDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)
)
val adClickData: DStream[AdClickData] = kafkaDataDS.map(
(kafkaData: ConsumerRecord[String, String]) => {
val data: String = kafkaData.value()
val datas: Array[String] = data.split(" ")
AdClickData(datas(0), datas(1), datas(2), datas(3), datas(4))
}
)
//最近一分钟,每10秒计算一次
val reduceDS: DStream[(Long, Int)] = adClickData.map(
data => {
val ts: Long = data.ts.toLong
val newTs: Long = ts / 10000 * 10000
(newTs, 1)
}
).reduceByKeyAndWindow((_: Int) + (_: Int), Seconds(60), Seconds(10))
reduceDS.print()
ssc.start()
ssc.awaitTermination()
}
//广告点击数据
case class AdClickData(ts:String,area:String,city:String,user:String,ad:String)
}
还是先消费,后生产.
总结
Spark的学习就告一段落了,下一步估计要啃Flink了