我决定给 ChatGPT 做个缓存层 Hello GPTCache

news2025/1/16 18:54:47

98dbe90569a58ecf0dfd1324f186fe0e.png

c22c163d9a0b0d469b7577c0c3528f23.png

🌟 写在前面

黄老板的一句【AI 的 iPhone 时刻已至】震撼了半个科技圈。或许,应该把这句话再扩展一下:AI 的 iPhone 时刻早已势不可挡,它不是平静随和地跟大家 say hi,而是作为一个强悍的巨人携着一把名为 ChatGPT 的斧子,重重地砸开了那扇通向 AI 新世界的大门。

接连几个月,ChatGPT、AutoGPT 等新事物的不断涌现持续刷新着大家的认知。与此同时,圈内不断有类 ChatGPT 或 ChatGPT 相关的新产品问世,当然,这其中也包括我的团队。

最终,我们从自己的开源项目 Milvus 和一顿没有任何目的午饭中分别获得了灵感,做出了 OSSChat、GPTCache。在这个过程中,我们也在不断接受「从 0 到 1」的考验。作为茫茫 AI 领域开发者和探索者中的一员,我很愿意与诸位分享这背后的故事、逻辑和设计思考,希望大家能避坑避雷、有所收获。

这次,我想先讲讲 GPTCache。

01.

由一次午饭时闲聊开始的项目……

是的,你没看错,GPTCache 的灵感起源是从一次午饭闲聊时开始的。

在展开讲述前,先普及一个背景。我的团队负责开源项目 Milvus 的开发与维护,需要频繁为社区用户答疑解惑。在这个过程中,我们经常会被问及一些基础文档相关或重复性的问题,加之不断有新用户进群,最终便形成了一个【提问、解答、重复提问、重复解答】的循环。而站在用户的角度,询问和答疑不都是同步和即时的(尽管我们一直在努力,但很难做到 24 小时在线)。尤其在遇到紧急情况时,可能根本得不到有效反馈。

这就是 OSSChat 的起源。作为一个开源项目知识库的集成者,它可以在 ChatGPT 的基础上,帮用户解决在 GitHub 上开源项目的很多问题,例如文档查找、安装指南等各种基础问题。

OSSChat 问世后,我们很激动,因为这是一个可以真正造福广大开发者的应用。不过,很快团队便遇到了新的考验,随着使用 OSSChat 的用户越来越多,我们忽然意识到一个问题:ChatGPT 可能会成为阻碍 OSSChat 提升性能的瓶颈。一来不稳定的 ChatGPT 服务会拉低 OSSChat 响应速度;二来每次调用 ChatGPT 接口,都会产生新的费用,这导致 OSSChat 的使用成本不断拉升。

同时,这也验证了我之前的一个猜测:为什么在 ChatGPT 如此火爆的情况下,LLM(大型语言模型)依然没有得到最为广泛的应用?答案是因为受制于性能和成本,甚至可以这样形容,性能和成本是 LLM 难以推广、应用以及获取用户增长的罪魁祸首。

说回 OSSChat,如何在保证它在性能提升的同时还能减少使用成本,成为团队亟待解决的大问题。烦恼于这件事的解决方案,大家经常食不知味。

于是,我明确提出了吃饭时不聊工作的要求。又是一次午饭时间,大家你一言我一语地唠闲嗑。但你知道,程序员聚在一起就那三个话题:计算机、买房和孩子。说着说着,话题就扯到了计算机的发展:在冯·诺依曼的体系结构下有了 CPU、Memory、控制器……由于 CPU 和内存在速度上不匹配,慢慢又发展出了在 CPU 之上的多级缓存。类比到 AI 时代,大模型就是新的 CPU,Vector Database 是内存。那在系统运行很慢的情况下……

对了!缓存层!在系统运行很慢的情况下,缓存层的重要性就不言而喻了!

既然这样,为什么不添加一个缓存层来存储 LLM 生成的响应呢?!这样一来,我们不仅可以提升 OSSChat 的响应速度,还能节省成本。

这就是 GPTCache 诞生的最初过程。

02.

LLM 缓存层的可行性到底有多少?

LLM 缓存层的想法让我们看到了更多的可能性。其实,GPTCache 的逻辑类似于过去在搭建应用时,增加一层 Redis 和 Memcache,从而加快系统查询效率并降低访问数据库的成本。有了缓存层,在测试 OSSChat 功能时,就无需再额外调用 ChatGPT 的接口了,省时省事儿,说的就是这个道理。

不过,传统的缓存只在键值相同的情况下检索数据,不适用于 AIGC(人工智能自动生成内容)应用。而 AIGC 需要的是语义近似的缓存,例如【苹果手机】和【iPhone】实际上都是指苹果手机。

所以,需要专门为 AIGC 应用设计搭建了一种全新的缓存,我们给它命名为——GPTCache。

GPTCache 能干什么?有了它,我们就能够对上百万个缓存的提问向量进行向量相似性检索,并从数据库中提取缓存的响应回答。这样一来,OSSChat 端到端的平均响应时间便能显著降低,也能节省更多成本。简言之,它可以加速 ChatGPT 响应速度并优化语义检索。有了 GPTCache,用户只需修改几行代码便可缓存 LLM 响应,将 LLM 应用提速 100 多倍。

当然,进行到这里,GPTCache 还只是一个概念。是否真正具备可行性还需要进一步验证。于是,团队对 OSSChat 发起了多轮调研。几番调查过后,我们发现用户的确喜欢提问某几类特定的问题:

  • 热门话题相关内容

  • 热门 GitHub repo

  • “什么是 xxx”的基础问题

  • OSSChat 首页推荐问题

这意味着和传统应用一样,AIGC 应用的用户访问同样具有时间和空间的局部性。因此,可以完美利用缓存来减少 ChatGPT 的调用次数。

03.

为什么不是 Redis?

验证完可行性,便到了搭建系统的环节。这里我有一点必须要分享,在搭建 ChatGPT 缓存系统时,Redis 并不是我们的首选。

个人而言,我很喜欢用 Redis,它性能出色又十分灵活,适用于各种应用。但是 Redis 使用键值数据模型是无法查询近似键的。如果用户提出以下两个问题:【所有深度学习框架的优缺点是什么?】【告诉我有关 PyTorch vs. TensorFlow vs. JAX 的区别?】,Redis 会将其定义为两个不同的问题,而事实上,这两个问题表达的是同一个意思。无论是通过缓存整个问题还是仅缓存由分词器生成的关键字,Redis 都无法命中查询。

而不同的单词在自然语言中可能具有相同的含义,深度学习(Deep Learning)模型更擅长处理语义。因此,我们应该在语义缓存系统中加入向量相似性检索这一环节。

成本是 Redis 不适用于 AIGC 场景的另一个原因。逻辑很简单,上下文越长,键和值越长,使用 Redis 存储内容所产生的费用也可以就会高得离谱。因此,使用基于磁盘(disk-based)的数据库进行缓存可能是更好的选择。加上 ChatGPT 响应较慢,所以对缓存响应速度的要求也不是很高。

04.

从零搭建 GPTCache

话不多说,先放一张 GPTCache 的架构图:

0467a99b1a8e19df106dd3c789b5932d.png

为了简化流程,我们最终决定了删除上下文管理器,所以整个 GPTCache 系统共包含五个主要组件:

  • LLM 适配器(LLM Adapter)

适配器将 LLM 请求转换为缓存协议,并将缓存结果转换为 LLM 响应。由于想让 GPTCache 变得更加透明(这样用户无需额外研发,便可将其轻松集成到我们的系统或其他基于 ChatGPT 搭建的系统中),所以适配器应该方便轻松集成所有 LLM,并可灵活扩展,从而在未来集成更多的多模态模型。

目前,我们已经完成了 OpenAI 和 LangChain 的适配器。未来,GPTCache 的接口还能进一步扩展,以接入更多 LLM API。

  • Embedding 生成器(Embedding Generator)

Embedding 生成器可以将用户查询的问题转化为 embedding 向量,便于后续的向量相似性检索。为满足不同用户的需求,我们在当下支持两种 embedding 生成方式。第一种是通过云服务(如 OpenAI、Hugging Face 和 Cohere 等)生成 embedding 向量,第二种是通过在 ONNX 上使用本地模型生成 embedding 向量。

后续,GPTCache 还计划支持 PyTorch embedding 生成器,从而将图像、音频文件和其他类型非结构化数据转化为 embedding 向量。

  • 缓存管理器(Cache Manager)

缓存管理器是 GPTCache 的核心组件,具备以下三种功能:

  • 缓存存储,存储用户请求及对应的 LLM 响应

  • 向量存储,存储 embedding 向量并检索相似结果

  • 逐出管理,控制缓存容量并在缓存满时根据 LRU 或 FIFO 策略清除过期数据

缓存管理器采用可插拔设计。最初,团队在后端实现时使用了 SQLite 和 FAISS。后来,我们进一步扩展缓存管理器,加入了 MySQL、PostgreSQL、Milvus 等。

逐出管理器通过从 GPTCache 中删除旧的、未使用的数据来释放内存。必要时,它从缓存和向量存储中删除数据。但是,在向量存储系统中频繁进行删除操作可能会导致性能下降。所以,GPTCache 只会在达到删除阈值时触发异步操作(如构建索引、压缩等)。

  • 相似性评估器 (Similarity Evaluator)

GPTCache 从其缓存中检索 Top-K 最相似答案,并使用相似性评估函数确定缓存的答案是否与输入查询匹配。

GPTCache 支持三种评估函数:精确匹配(exact match)、向量距离(embedding distance)和 ONNX 模型评估。

相似性评估模块对于 GPTCache 同样至关重要。经过调研,我们最终采用了调参后的 ALBERT 模型。当然,这一部分仍有改进空间,也可以使用其他语言模型或其他 LLM(如 LLaMa-7b)。对于这部分有想法的小伙伴可以联系我们!

  • 后期处理器(Post Processors)

后期处理器整理最终响应返回给用户。它可以返回最相似的响应或根据请求的温度参数调整响应的随机性。如果在缓存中找不到相似的响应,后期处理器则会将请求转发给 LLM 来生成响应,同时生成的响应将被存储在缓存中。

05.

激动人心的测评环节

接下来便是检验成果的重要一步了!为评估 GPTCache 的性能,我们选取了一个数据集,其中包含三种句子对:语义相同的正样本、语义相关但不完全相同的负样本、语义完全不相关的中间样本。

  • 实验 1

为了确定基线(baseline),我们先将 30,000 个正样本的键存入缓存中。接下来,我们随机选择 1,000 个样本,并使用对应的另 1,000 条句子(句子对中的另一个句子)作为查询语句。

以下是我们获得的结果:

14ddb4cb4dbf3e78fa8474046ac5c464.png

我们发现,将 GPTCache 的相似性阈值设置为 0.7 可以较好地平衡命中率和负相关比率。因此,所有后续测试中都会应用这个设置。

用 ChatGPT 生成的相似度分数来确定缓存的结果是否与查询问题相关。将正样本阈值设置为 0.6,使用以下 prompt 生成相似度分数:

请将以下两个问题的相似度评分在0到1的范围内,其中0表示不相关,1表示完全相同的含义。
问题“有关自学的一些好的技巧是什么?”和“自学的聪明技巧是什么?”非常相似,相似度得分为1.0。
问题“野外生存的一些必需品是什么?”和“你需要什么东西才能生存?”相当相似,相似度得分为0.8。
问题“如果您16岁,您会给自己什么建议?”和“我应该在哪里在线推广我的业务?”是完全不同的,因此相似度得分为0。

*(注:以上 prompt 为中文翻译。原文请见:https://zilliz.com/blog/Yet-another-cache-but-for-ChatGPT)

  • 实验 2

进行包含 50% 正样本和 50% 负样本的查询,在运行 1,160 个请求后,产生了如下结果:

6d6ee28dbf2b723bc15180f1fabc999d.png

命中率几乎达到了 50%,命中结果中的负样本比例与实验 1 相似。这说明 GPTCache 善于区分相关及不相关的查询。

  • 实验 3

将所有负样本插入到缓存中,并使用它们句子对中的另一个句子作为查询。虽然某些负样本获得了较高的相似度得分(ChatGPT 认为它们的相似度打分大于 0.9),但是没有一个负样本命中缓存。原因可能是相似性评估器中使用的模型针对该数据集进行过微调,所以几乎所有负样本的相似性打分都降低了。

以上就是团队进行的典型实验,目前,我们已将 GPTCache 集成到 OSSChat 聊天机器人中,并努力收集生产环境中的统计数据。后续,我也会发布基准测试报告,报告中还包含实际用例,可以期待一下!

在进一步规划上面,团队正努力在 GPTCache 中接入更多 LLM 模型和向量数据库。此外,GPTCache Bootcamp 也即将发布。大家可以通过 bootcamp 学习如何在使用 LangChain、Hugging Face 等过程中加入 GPTCache,也可以 get 如何将 GPTCache 融入其他多模态应用场景中。

🌟写在最后

两周,仅仅用了两周,我们便完成搭建了 GPTCache 并将其开源。在我看来,这是一件了不起的事情,这离不开团队每一位成员的付出。从他们的身上我一次又一次地感受到开发者这个群体的冲劲,以及努力实践“技术改变未来”的信念,感慨良多。

对于团队以外的开发者,我也有一些话想说。正如开篇提到的,写这篇文章的初衷是站在 AIGC 从业者的角度,和大家分享 ChatGPT 引领的浪潮下,开发者【从 0 到 1】【从 1 到 100】的探索经历和心得,以求和大家讨论、共勉。

当然,最最重要的是希望各位开发者能参与到 GPTCache 的共建中。作为一个新生儿,它仍有很多需要学习的地方;而作为一个为开源而生的项目,它需要大家的建议、指正。

欢迎大家点击【阅读原文】或复制链接【https://github.com/zilliztech/GPTCache】使用并参与 GPTCache 的开源项目!(千万!千万记得管理缓存的容量!

(本文作者栾小凡系 Zilliz 合伙人、技术总监)

32755f3b5b46722dcb4f844663e89c70.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415571.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode每日一题:数组专练篇第二期(2/2)

😚一个不甘平凡的普通人,日更算法学习和打卡,期待您的关注和认可,陪您一起学习打卡!!!😘😘😘 🤗专栏:每日算法学习 💬个人…

【LeetCode: 剑指 Offer II 089. 房屋偷盗(打家窃舍) | 暴力递归=>记忆化搜索=>动态规划】

🍎作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎 🍎座右…

Adept AI,颠覆“产品学“的产品

1.三体降临,产品学不存在了? 兄弟们,你们敢想象以后我们都会有用自己的贾维斯吗?我们不需要在安装一大堆APP,不需要适应各种APP交互,只需一句话你能快速达到你想要的目的吗?你能想象那种科幻大…

Nacos 客户端服务注册源码分析-篇二

Nacos 客户端服务注册源码分析-篇二 继续接上回,上回分析到 NacosNamingService 的整个注册的流程,其实是通过 NacosFactory.createNamingService 方法,反射获取 NacosNamingService 接口的实现类 NacosNamingService ,而 NacosN…

基于粒子群算法的含风光燃储微网优化调度

说明书 MATLAB代码:基于粒子群算法的含风光燃储微网优化调度 关键词:微网优化调度 粒子群算法 风光燃储 参考文档:《基于多目标粒子群算法的微电网优化调度_王金全》仅参考部分模型,非完全复现 优势:代码注释详实&…

【通过Cpython3.9源码看看python中的大小整数】

小整数 /* interpreter state */#define _PY_NSMALLPOSINTS 257 #define _PY_NSMALLNEGINTS 5这是CPython中定义的两个常量,它们用于控制解释器状态中的小整数对象池。在CPython中,小整数对象池是一种优化机制,用于减少…

轨迹相似度整理

1 基于点之间的距离 1.1 欧几里得距离 优点:线性计算时间缺点:轨迹长度必须一样 1.2 DTW DTW 笔记: Dynamic Time Warping 动态时间规整 (&DTW的python实现) 【DDTW,WDTW】_UQI-LIUWJ的博客-CSDN博客 …

Golang流媒体实战之六:lal拉流服务源码阅读

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 《Golang流媒体实战》系列的链接 体验开源项目lal回源转推和录制lalserver的启动源码阅读Golang流媒体实战之五:lal推流服务源码阅读Golang流媒体…

大数据3 -Hadoop HDFS-分布式文件系统

目录 1.为什么需要分布式存储? 2. HDFS的基础架构 3. HDFS存储原理 4. NameNode是如何管理Block块的 5. HDFS数据的读写流程 1.为什么需要分布式存储? •数据量太大,单机存储能力有上限,需要靠数量来解决问题•数量的提升带…

【区块链】走进web3的世界-合约交互中的异常/边界处理

在以太坊智能合约中,异常处理是一个非常重要的问题,因为任何一个函数调用都有可能导致异常。常见的异常包括函数调用失败、无效参数、内部错误等。 在 Solidity 中,可以使用 require、assert 和 revert 等关键字来处理异常。这些关键字可以用…

第一章 序言:Pytorch在自然语言处理中的应用

01 序言:Pytorch在自然语言处理中的应用 目录01 序言:Pytorch在自然语言处理中的应用1. PyTorch简介2. 自然语言处理3. PyTorch在自然语言处理中的应用3.1 文本分类3.2 情感分析3.3 机器翻译4. 结论1. PyTorch简介 首先,我们需要介绍一下PyT…

WINDOWS消息

WINDOWS消息 Unit01消息队列 01消息队列概念 消息队列是用于存放消息的队列消息在队列中先进先出所有窗口程序都有消息队列程序(GetMessage)可以从队列中获消息 02消息队列分类 系统消息队列:由系统维护的消息队列(这个队列非…

Qt的内存管理机制

QObject的parent设置为null 1.如果构造时直接指定了null,当前实例不会有父对象存在,Qt也不能自动析构该实例,除非实例超出作用域导致析构函数被调用,使用deletelater()函数,不建议使用delete 2.如果指定了parent&#…

关于电商商品数据API接口列表,你想知道的(详情页、Sku信息、商品描述、评论问答列表)

目录 一、商品数据API接口列表 二、商品详情数据API调用代码item_get 三、获取sku详细信息item_sku 四、获得淘宝商品评论item_review 五、数据说明文档 进入 一、商品数据API接口列表 二、商品详情数据API调用代码item_get <?php// 请求示例 url 默认请求参数已经URL…

数据结构-插入排序

一.概要 插入排序是一种基于比较的排序算法&#xff0c;其基本思想是将待排序的元素插入到已排序的序列中&#xff0c;形成新的有序序列。 插入排序算法的过程如下&#xff1a; 将待排序序列分为两部分&#xff1a;已排序部分和未排序部分&#xff1b; 初始时&#xff0c;已…

C++string类的详细使用方法

String类的详细使用 文章目录String类的详细使用初始化扩容空间resize与reserve扩容长度获取插入与删除函数运算符插入append插入assign字符串截取push_back尾插erase删除replase替换swap交换pop_back尾删substr截断字符串功能copy拷贝find查找rfind反向查找find_first_of匹配查…

三路快排(基于三指针单趟排序的快速排序)+快排时间复杂度再分析

目录 一.前言 二. 三路快排 &#x1f60d;算法思想: &#x1f60d;算法实现步骤: &#x1f60d;三指针单趟排序的实现:​ &#x1f60d;非递归快排完全体: &#x1f914;与C标准库里的快排进行对比测试: 三.快排时间复杂度再分析 一.前言 http://t.csdn.cn/mz8dghttp://…

SolidWorks2020安装教程

破解文件及步骤 和 安装包 hf&#xff1a;SolidWorks2020 即可 &#xff08;我的推广 共中号&#xff09; Before installation, block the outgoing Internet access by means of Windows Firewall or cord plug. Check .NET Framework 3.5 and 4.0 are installed. If .NET …

Hive安装与操作

目录 环境 数据 实验步骤与结果 &#xff08;1&#xff09;环境启动 &#xff08;2&#xff09;Hive基本操作 环境 Hadoop集群开发环境、mysql、Hive环境 数据 course.txt、sc.txt、student.txt 实验步骤与结果 &#xff08;1&#xff09;环境启动 ①执行命令&#xf…

JVM的内存结构(超详细附加大厂面试题)

内存结构 1、什么是 JVM &#xff1f; 1&#xff09;定义 Java Virtual Machine &#xff0c;Java 程序的运行环境&#xff08;Java 二进制字节码的运行环境&#xff09;。 2&#xff09;好处 一次编译&#xff0c;处处执行 自动的内存管理&#xff0c;垃圾回收机制 数组下…