奇异值分解(SVD)和图像压缩

news2025/1/18 2:10:38

在本文中,我将尝试解释 SVD 背后的数学及其几何意义,还有它在数据科学中的最常见的用法,图像压缩。

奇异值分解是一种常见的线性代数技术,可以将任意形状的矩阵分解成三个部分的乘积:U、S、V。原矩阵A可以表示为:

具体来说,A矩阵中的奇异值就是\Sigma矩阵中的对角线元素,它们是矩阵A的特征值的平方根,表示A矩阵在各个主方向上的拉伸程度。U矩阵是AAT的特征向量构成的正交矩阵,表示数据集在降维后的新的坐标系中的投影。V矩阵是ATA的特征向量构成的正交矩阵,表示每个数据点在降维后的新坐标系中的坐标。

一个矩阵的奇异值(singular values)是指其奇异值分解中的\Sigma矩阵的对角线上的元素,也就是特征值的平方根。换句话说,矩阵的奇异值是矩阵的奇异值分解中量度矩阵对输入矩阵进行的线性变换的尺度因子。

奇异值在很多应用中都有广泛的应用,例如在图像处理中,它可以用来对图像进行压缩和降噪;在推荐系统中,它可以用来对用户的偏好进行建模和推荐相关的产品或服务;在自然语言处理中,它可以用来对文本数据进行降维和特征提取等。

数学原理

如果我们有一个矩阵A

要计算 SVD,首先需要通过找到 AA^{T} 的特征值来计算奇异值。

上述矩阵的特征方程为:

所以得到的奇异值是:

奇异向量就是 ATA 的正交特征向量集。ATA 的特征值是 25、9 和 0,由于 ATA 是对称的,我们知道特征向量是正交的。

所以,先计算 λ=25

然后进行化简:

其方向的单位向量为:

同理 对于 λ = 9,特征向量为:

对于第三个特征向量 0,我们可以使用它垂直于 v1 和 v2 的属性:

求解上述方程得到第三个特征向量

现在,我们计算 U,得到

这样就得到了最终的 SVD 方程:

图像压缩

通过仅保留最重要的奇异值及其对应的奇异向量,SVD 被用于图像压缩以减小图像的大小。这可以从根本上减少在不丢失其最重要的视觉数据的情况下存储图像所需的额外存储量。

我们将使用下面的图像进行图像压缩:

导入库和读取图片十分简单

 import requests
 import cv2
 import numpy as np
 import matplotlib.pyplot as plt
 
 img = cv2.imread('flower.bmp')
 gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 gray_image = gray_image.astype(np.float64)

这里我们将图像转换成灰度图,执行奇异值分解

 U, s, V = np.linalg.svd(gray_image, full_matrices=False)

numpy中就包含了该方法,所有我们直接调用即可,我们看看前 10 个奇异值

 top_10_singular_values = s[:10]

可视化

 plt.plot(range(1, len(s) + 1), s, 'r-')
 plt.xlabel("Rankings")
 plt.ylabel("Singular Values")
 plt.title("Singular Values versus their Rankings")
 plt.savefig("Singular_values_vs_rankings.png")
 plt.show()

从奇异值和排序图中可以注意到图像的大部分值都包含在少量奇异值中,所以可以得出到较高的奇异值包含的图像信息水平非常低,这也说明使用奇异值分解进行降维和图像压缩是可行的。

现在,让我们尝试重建和显示图像。

 k_values = [10, 50, 100]
 
 plt.figure(figsize=(12,6))
 
 for i in range(len(k_values)):
     low_rank = U[:, :k_values[i]] @ np.diag(s[:k_values[i]]) @ V[:k_values[i], :]
     plt.subplot(2,3,i+1),
     plt.imshow(low_rank, cmap='gray'),
     plt.title(f"For K value = {k_values[i]}")
     plt.savefig("Reconstruction_with_k_values.png")

可以注意到具有不同 K 值的所有图像都有显着差异。使用了前 10 个奇异值,结果图像一点也不清晰。使用了前 50 个奇异值,生成的图像比之前的图像清晰多了,但是还有一些轻微的模糊。当我们使用前 100 个奇异值时,图像比前两张图像越来越清晰,基本和原图很接近了。随着 K 值的增加,图像的清晰度也会增加。

总结

本文介绍了奇异值分解 (SVD) 的数学原理和一个实际的应用案例,可以看到SVD是一种强大的图像压缩方法,有助于在减小图像尺寸的同时保留大部分重要的视觉信息。

https://avoid.overfit.cn/post/f0a675aad6994b61a2aa93fb647a0633

作者:Neokai

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415314.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里通义千问、百度文心一言、ChatGPT与GPT-4大比拼

各个大模型的研究测试传送门 ​阿里通义千问传送门: https://tongyi.aliyun.com/chat 百度文心一言传送门: https://yiyan.baidu.com/ ChatGPT传送门(免墙,可直接注册测试): https://wowchat.cn GPT…

离线安装k8s/kubernetes v1.17.1并部署服务验证功能

条件: 3台没有网络的centos7.9服务器 1.系统优化 hostnamectl set-hostname k8s-master && bash #只在master节点上执行 hostnamectl set-hostname k8s-node1 && bash #只在node1节点上执行 hostnamectl set-hostname k8s-node2 && …

嵌入式:BSP的理解

BSP概念总结BSP定义BSP的特点BSP的主要工作BSP在嵌入式系统和Windowsx系统中的不同BSP和PC机主板上的BIOS区别BSP与 HAL关系嵌入式计算机系统主要由 硬件层,中间层,系统软件层和应用软件层四层组成。硬件层:包含CPU,存储器(SDRAM&…

(数字图像处理MATLAB+Python)第四章图像正交变换-第一节:离散傅里叶变换

文章目录一:一维离散傅里叶变换(1)定义(2)实例二:一维快速傅里叶变换(1)定义(2)实例三:二维离散傅里叶变换(1)定义&#x…

SpringCloud微服务技术栈.黑马跟学(十二)

SpringCloud微服务技术栈.黑马跟学 十二今日目标服务异步通信-高级篇1.消息可靠性1.1.生产者消息确认1.1.1.修改配置1.1.2.定义Return回调1.1.3.定义ConfirmCallback1.2.消息持久化1.2.1.交换机持久化1.2.2.队列持久化1.2.3.消息持久化1.3.消费者消息确认1.3.1.演示none模式1.3…

Flutter TextField UI 实例 —— 新手礼包

大家好,我是17。 新手礼包一共 3 篇文章,每篇都是描述尽量详细,实例讲解,包会! Flutter Row 实例 —— 新手礼包Flutter TextField UI 实例 —— 新手礼包Flutter TextField 交互实例 —— 新手礼包 本篇介绍了 Tex…

机器学习:基于逻辑回归对超市销售活动预测分析

系列文章目录 作者:i阿极 作者简介:Python领域新星作者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒关注哦!&a…

linxu学习之进程

文章目录进程程序和进程产生进程销毁进程多进程高并发设计孤儿僵尸守护进程孤儿进程:守护进程(重点)僵尸进程:进程 程序和进程 操作系统可以运行多个程序,那他是如何运行的?实际上,CPU的执行是很快的,而待…

《随便测测》WEB接口测试平台

编写用例的船新版本,从未有过的顺滑体验背景在保证用例运行稳定、高效、准确的前提下以降低测试人员编写用例的时间为目的,减少编写用例的复杂度,达到提升效率的目的。解决问题因被测系统业务流程长,接口多(多的一个场…

【ssl认证、证书】SSL 证书基本概念、证书格式、openssl和keytool的区别

文章目录1. keytool VS openssl2. X.509 VS PKCS2.1 PKCS2.2 X.5092.2.1 证书编码格式2.2.1.1 DER 证书编码格式二进制2.2.1.2 文本格式 pem2.2.2 文件后缀名3. 常见Web服务软件及证书格式参考相关文章://-----------Java SSL begin----------------------【ssl认证…

【云原生】k8s集群命令行工具kubectl之集群管理命令

kubectl集群管理命令详解一、准备工作1.1、Replication Controller1.2、Deployment1.3、DaemonSet1.4、查看创建的svc和pod1.5、kubectl 命令自动补全设置二、集群管理命令2.1、top2.2、cordon2.3、uncordon2.4、drain2.5、taint2.5.1、污点设置。2.5.2、容忍度使用一、准备工作…

Scala之函数式编程

目录 函数和方法的区别: 参数默认值: 函数至简原则---能省则省: 至简原则细节 匿名函数的化简: 匿名函数至简原则: 高阶函数: 高阶函数的三种用法: (1)函数可以作…

【K8S系列】深入解析Pod对象(二)

目录 序言 1.Volume 简单介绍 2 Projected Volume 介绍 2.1 Secret 2.1.1 yaml讲解 2.1.2 创建Pod 2.2 Downward API 2.2.1 yaml示例 2.2.2 Downward API 支持字段 3 投票 序言 任何一件事情,只要坚持六个月以上,你都可以看到质的飞跃。 在…

SqlServer实用系统视图,你了解多少?

SqlServer实用系统视图,你了解多少?前言master..spt_valuessysdatabasessysprocesses一套组合拳sysobjectssys.all_objectssyscolumnssystypessyscommentssysindexes结束语前言 在使用任何数据库软件的时候,该软件都会提供一些可能不是那么公…

小规模容器编排使用Docker Swarm不香么,用个锤子的kubernetes

文章目录一、Docker Swarm是什么?二、Swarmkit和Swarm Mode是什么?三、Docker Swarm的核心设计四、Docker Swarm安装部署4.1、初始化Swarm节点14.2、新节点加入Swarm集群4.3、使用swarm部署服务4.4、swarm集群管理一、Docker Swarm是什么? D…

“QT 快速上手指南“ 之 计算器(二)组件,坐标,窗口

文章目录前言一、QT 基本组件用法介绍:1. QLabel :2. QPushButton :3. QLineEdit:二、坐标系统三、窗口部件的大小设置1. setSize( ) 函数:2. resize( )函数:3. setFixedSize( )函数:4. setFixedWidth( ) 和 setFixedHeight( )函数…

标准化归一化方法

一、经典机器学习的归一化算法 分别是0-1标准化(Max-Min Normalization)和Z-Score标准化。 1.1 0-1标准化方法 每一列中的元素减去当前列的最小值,再除以该列的极差。 不过在深度学习领域,我们更希望输入模型的数据是Zero-Ce…

使用Serv-U搭建FTP服务器并公网访问【内网穿透】

文章目录1. 前言2. 本地FTP搭建2.1 Serv-U下载和安装2.2 Serv-U共享网页测试2.3 Cpolar下载和安装3. 本地FTP发布3.1 Cpolar云端设置3.2 Cpolar本地设置4. 公网访问测试5. 结语1. 前言 科技日益发展的今天,移动电子设备似乎成了我们生活的主角,智能手机…

这些IT行业趋势,将改变2023

上一周,你被"AI"刷屏了吗? 打开任何一家科技媒体,人工智能都是不变的热门话题。周初大家还在用ChatGPT写论文、查资料、写代码,到周末的时候大家已经开始用GPT-4图像识别来做饭、Microsoft 365 Copilot 来写PPT了。 GP…

【周末闲谈】AI的旅途

个人主页:【😊个人主页】 系列专栏:【❤️周末闲谈】 系列目录 ✨第一周 二进制VS三进制 ✨第二周 文心一言,模仿还是超越? ✨第二周 畅想AR 文章目录系列目录前言AIAI的开端第一个AI程序AI的寒冬关于AI的思考末尾前言…