这些IT行业趋势,将改变2023

news2025/1/18 6:09:01

上一周,你被"AI"刷屏了吗?

打开任何一家科技媒体,人工智能都是不变的热门话题。周初大家还在用ChatGPT写论文、查资料、写代码,到周末的时候大家已经开始用GPT-4图像识别来做饭、Microsoft 365 Copilot 来写PPT了。

GPT-4已经能为人类安排菜谱了

科技的发展速度已经快到超乎人类的预料,当我们还仅仅只是在理解概念时,实际上的科学技术应用已经悄然潜伏在了我们周围。

如果想快速跟上科技潮流,那么我们就一定得从了解IT行业趋势入手。近期,我们整合了几份报告,整理出来以下IT行业趋势:

由于篇幅关系,本文仅列出其中两大行业趋势,如果你想详细了解这12个趋势,在文末可以领取完整版的技术趋势解读!

以下是正文,Enjoy!

关键词1:AI

ChatGPT与GPT-4的一炮而红,重新点燃了业界对人工智能的热情。ChatPGT的能力已经毋庸置疑,而最新推出的GPT-4更是突破了大众对AI技术的想象边界。

今天,我们更想与大家聊的是,随着AI的能力越来越强大,人类应该如何与AI相处,让AI技术服务于我们的工作与生活,防范技术滥用的风险。

自适应AI的崛起与伦理风险

自适应AI,指的是过反复训练模型,并在运行和开发环境中使用新的数据进行学习,迅速适应在最初开发过程中无法预见的现实变化的智能系统。自适应AI最显著的特点是它能够根据实时反馈,动态调整其学习过程和学习目标。

一图看懂什么是自适应AI

自适应AI系统拥有广泛的应用空间。在程序开发领域,由GitHub与OpenAI(ChatGPT开发者)合作开发的Copilot就是一个典型例子。它能够协助程序员在一些特定的开发环境当中,进行代码注释、可运行代码转换、自动补全代码块与重复代码。GitHub 的研究报告称,随着训练次数的增加,其代码正确率会不断提升。

无论是Copilot还是最新亮相的GPT-4,自适应AI的意义在于降低编程的技术门槛的同时,进一步提升了编程效率。可以预见的是,更多的企业将依靠自适应AI系统来提升效率,适应市场变化。然而,人类的监管措施还无法跟上AI的进步速度,与技术进步相伴的是AI伦理风险。

中国电子标准技术化研究院的报告指出,AI的伦理风险具有独特性。其一,与个人切身利益密切相关,如果将算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,一旦产生歧视,必将系统性地危害个人权益。其二,引发算法歧视的原因通常难以确定,连设计者可能都不知道算法如何决策,在系统中发现存在歧视和歧视根源更加困难。其三,人工智能在企业决策中的应用愈发广泛,而资本的逐利本性更容易导致公众权益受到侵害

好在事态已经发生改变,越来越多的利益相关者正在推动保护性政策,以堵上AI的伦理漏洞。例如,欧盟正在制定“AI责任指令”,要求企业对其部署的AI技术造成的任何损害负责。监管力度的加强将会要求企业对于AI模型的部署与管理更加自律,更加严肃地应对AI的伦理风险。

关键词2:人才

2022年,海内外的IT行业经历了巨大的动荡,大量科技企业都面临业务收缩的窘境。不过,优质的程序员仍然能够在紧缩的就业市场上受到追捧。如何高效地招聘到拥有高绩效表现的程序员,是技术管理者们面临的共同难题。

人才识别成技术招聘的核心挑战

2022年,美国编程技能评估平台CodinGame进行了一次覆盖65000名程序员与技术招聘HR的调查报告。研究发现,46.59%的技术招聘团队认为,技术招聘的首要挑战就是寻找符合岗位需求的候选人,紧随其后的第二大挑战是在候选人并不完全匹配岗位时,如何鉴别其技术潜能。

数据来源:CodinGame 「Tech Hiring Survey 2022」

藏在这2大招聘挑战背后的,是从业人员的增加。Statista的数据显示,2018年-2023年,全球软件开发从业人员保持着不断增长的态势。2023年,全球软件工程师的数量将会达到2770万。

数据来源:Statista

随着从业人员数量的增长,程序员技术水平参差不齐的问题也暴露出来。1975年出版的软件行业的名著——《人月神话》曾给出了一个统计结果,秀程序员的开发效率是普通程序员的 10 倍。40多年过去,这个结论得到了众多企业的普遍认可。对于企业而言,技术招聘的难点在于如何能识别出拥有10倍开发效率的优秀程序员。

与大多数岗位的招聘不同,仅仅通过简历,面试官非常难判断候选人的真实水平,也很难看出在多大程度上,候选人的技能栈与岗位需求相匹配。这会导致在招聘过程中,错过一些有潜力或有能力的合格候选人,也有可能将不适合的程序员招入团队之中,给人才体系建设带来更大的损失。

实时编程面试受广泛认可

程序员是IT行业的核心岗位,企业发出的每一份offer从来都是慎重的。程序员希望尽其所能地向潜在雇主展示他们所掌握的技能,招聘人员也希望准确了解候选人的技能,以确保他们是否满足岗位的要求。

实时在线编程的笔面试是一种能够让雇主与候选人都满意的技能评估方法。CodinGame的调查结果显示,招聘人员更偏好的技术招聘流程是:先进行在线编程面试,并在面试过程中对代码进行讨论,然后再进行技术能力测试,并展示个人编程项目经历。同时,程序员也将在线编程测试列为他们最喜欢的评估方法。

数据来源:CodinGame 「Tech Hiring Survey 2022」

在线编程笔面试的形式之所以受欢迎,是因为雇主和候选人都能从这种面试形式中获益。

对于雇主一方而言,实时在线编程的形式更容易判断候选者的能力。同样一个编程问题,一般有多种代码编写方式作为解决方法,而这些方法之间一定有优劣之分,哪位候选人代码编写质量更高,也就代表他的技术实力越扎实,即使两个候选人所写的代码一样,他们的用时差异也很重要,因为这显示了开发效率的不同,实时的在线编程面试不仅可以看到最终结果的呈现,它对于候选人的考核更加精准、也更加全面。

从程序员的角度来看,实时在线编程的形式也更有利于他们发挥自己的能力。如今,越来越多的候选人认为,相比白板或在纸上写代码,线编程更贴近真实的开发环境,更有助于展现自己的实力,面试体验更好

AI已经不是新鲜的技术概念,像ChatGPT这样的AI产品之所以能够惊艳世界,原因就在于人才是一切技术进步的推动力,是人才让技术不断突破边界,有了更加广阔的应用空间。如何能更精准、更快速甚至更低成本地评估和招聘技术人才是企业竞争的另一个战场。

| One More thing

现在,我们已经为你准备好了上“战场”的武器。

ShowMeBug 是一款支持实战编程的技术招聘笔面试工具,提供海量丰富且专业的岗位题型题库、智能组卷和自动化评卷,并集成多种编程框架的轻协同 IDE,可实现真实编程环境,实时运行,支持在线DeBug调试,以此助力企业通过在线笔面试实战编程考核方式,搭建一支技术实力过硬的人才团队,应对未来的竞争与挑战。

参考资料:

1. Gartner 「10 Top Strategic Technology Trends 2023」

2. CodinGame 「Tech Hiring Survey 2022」

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415213.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【周末闲谈】AI的旅途

个人主页:【😊个人主页】 系列专栏:【❤️周末闲谈】 系列目录 ✨第一周 二进制VS三进制 ✨第二周 文心一言,模仿还是超越? ✨第二周 畅想AR 文章目录系列目录前言AIAI的开端第一个AI程序AI的寒冬关于AI的思考末尾前言…

憨批的语义分割重制版11——Keras 搭建自己的HRNetV2语义分割平台

憨批的语义分割重制版11——Keras 搭建自己的HRNetV2语义分割平台学习前言什么是HRNetV2模型代码下载HRNetV2实现思路一、预测部分1、主干网络介绍a、Section-1b、Section-2c、Section-3d、Section-42、特征整合部分3、利用特征获得预测结果二、训练部分1、训练文件详解2、LOSS…

【Python童年游戏】满满的回忆杀—那些年玩过的童年游戏你还记得吗?那个才是你的菜?看到第一个我就泪奔了(致我们逝去的青春)

导语 滴一一学生卡🙌 结伴上车的学生仔子们 用笑声打破车厢的沉默 大人眼里的晚高峰 是给放学后快乐😀时光的加时 下车的学生匆匆起身带起 一阵熟悉的栀子香于💓 是关于校园的记忆 开始零零散散地闪现 放学后集合的秘密基地/跟着城…

Half-UNet:用于医学图像分割的简化U-Net架构

Half-UNet简化了编码器和解码器,还使用了Ghost模块(GhostNet)。并重新设计的体系结构,把通道数进行统一。 论文动机 编码器的不同类型的架构图,编码器(A-C)的结构分别来源于U-Net的编码器、解码器和全的Unet结构。 下面是上图的一些结果指标…

4.2学习周报

文章目录前言文献阅读摘要介绍时间序列预测目前存在的问题时间序列预测方法分类未来方向时间序列预测总结前言 本周阅读文献《Forecast Methods for Time Series Data: A Survey》,本文主要对目前时间序列数据建模方法进行分类,主要分为了三类&#xff…

Linux->文件系统磁盘文件管理

目录 1 磁盘结构 2 逻辑抽象管理磁盘 2.1 逻辑抽象 2.2 管理磁盘 2.3 补充知识 3 软硬连接 1 磁盘结构 本篇的学习需要建立在大家在脑海中有一副磁盘的结构才能进行下去,所以我会以图解的方式为大家简单讲解一下,注:博主对这一部分并不是…

深度学习实战——卷积神经网络/CNN实践(LeNet、Resnet)

忆如完整项目/代码详见github:https://github.com/yiru1225(转载标明出处 勿白嫖 star for projects thanks) 系列文章目录 本系列博客重点在深度学习相关实践(有问题欢迎在评论区讨论指出,或直接私信联系我&#xf…

详细介绍别人电脑访问到自己电脑运行的项目

文章目录 让别人远程访问你的代码网站项目或临时演示你的项目给客户的方式详解 引言一、创建一个你想要别人访问的项目二、明确你想要将这个网站或者项目存放的地方 终端分类服务器设备WEB服务器三、部署我们的网页 本地部署流程进入浏览器输入网址访问获取本机的IP地址&#…

多模态特征融合:图像、语音、文本如何转为特征向量并进行分类

多模态特征融合前言输入层,数据集转为特征向量图像语音什么是时域信号,什么是频域信号语音信号转换 - 1.傅立叶变换语音信号转换 - 2.梅尔频率倒谱系数文本词袋模型词嵌入模型输出层,多模态模型合并前言 学习多模态的话题可以从深度学习的分…

API接口安全—webservice、Swagger、WEBpack

API接口安全—webservice、Swagger、WEBpack1. API接口介绍1.1. 常用的API接口类1.1.1. API接口分类1.1.1.1. 类库型API1.1.1.2. 操作系统型API1.1.1.3. 远程应用型API1.1.1.4. WEB应用型API1.1.1.5. 总结1.1.2. API接口类型1.1.2.1. HTTP类接口1.1.2.2. RPC类接口1.1.2.3. web…

NLP与ChatGPT的碰撞:大模型和小模型联合发力

ChatGPT真的太火了!作为NLP的终结者,ChatGPT又会与NLP发生怎么样的碰撞?大模型可以替代小模型吗?NLP又将何去何从?今天给大家推荐一本好书:《基于NLP的内容理解》! 文章目录一、背景二、书籍介绍…

【原创】AIGC之ChatGPT工作原理

AIGC是什么 AIGC - AI Generated Content (AI生成内容),对应我们的过去的主要是 UGC(User Generated Content)和 PGC(Professional user Generated Content)。 AIGC就是说所有输出内容是通过AI机…

2023年3月的10篇论文推荐

三月有很多的重大产品发布,包括刚刚发布的GPT4,还有Meta刚发布就被泄露的LLaMA,midjourney V5,还有ChatGPT的API(非常便宜)等等。 但是本文整理的是本月应该阅读的10篇论文,将包括多模态语言模…

Linux中shell内外命令讲解(下)

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放&#xff0…

MySQL数据库:联合查询、子句查询、合并查询

一、联合查询 1.概念 简单理解就是将多张表合并到一起,然后进行数据查询,所有也叫多表联查。 如何将两张表合并到一起? 取两张表的笛卡儿积:将表1中的数据逐条与表2中的数据进行合并,最终形成的新的临时表&#xff0…

py征途4之无效思路

事件回顾: 近期班里组织了一个跑团,使用的是keep跑团助手(小程序)。每个人都有一个昵称,要对“每日跑量”进行统计,以明确到底有哪些人跑了步,哪些人没跑步。 为了解决这个问题,从3月…

springboot登录校验[JWT]

前言: 👏作者简介:我是笑霸final,一名热爱技术的在校学生。 📝个人主页:个人主页1 || 笑霸final的主页2 📕系列专栏:后端专栏 📧如果文章知识点有错误的地方,…

Spring Transaction 源码解读

Spring Transaction 规范的maven坐标如下&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-tx</artifactId><version>...</version></dependency>该包提供了spring事务规范和默认的jta(ja…

【SSM】SSM整合步骤和流程细化

整合SSM参考文献一、SSM整合前概述1. 各个框架在三层架构模式中所担任的角色2. 两个IOC容器的创建1&#xff09;整合时Spring中IOC容器的创建时间2&#xff09;Spring提供的监听器&#xff08;ContextLoaderListener&#xff09;二、SSM整合步骤参考文献 卤蛋的SSM整合完整流程…

华为nat配置实验:内网能够访问外网,内网服务器80端口映射出去

一 需求分析1.1 需求公司A在北京&#xff0c;公司B在上海&#xff0c;本次实验仅仅模拟局域网内出口路由器的配置&#xff0c;公司A业务流量较大&#xff0c;并且预算有限。公司B模拟外网的一个小型局域网&#xff0c;要求公司B的主机能够访问公司A的web服务器。1.2 分析采用na…