前面我们知道了cmdline是什么,已经在哪里添加cmdline?现在我们来看看在哪里传输cmdline,以及传输收到后怎么用?
参考内容来自前辈,感激:
https://blog.csdn.net/weixin_42031299/article/details/121239507
https://blog.csdn.net/weixin_42135087/article/details/107957684
1、uboot以tag方式给内核传参–怎么传?
我们知道cmdline是由bootloader传给kernel的。
怎么传输的?
uboot是通过在启动内核时,向内核传递tag参数,其中就包括cmdline
1、tag方式传参
-
(1)struct tag,tag是一个数据结构,在uboot和linux kernel中都有定义tag数据机构,而且定义是一样的。
-
(2)tag_header和tag_xxx。tag_header中有这个tag的size和类型编码,kernel拿到一个tag后先分析tag_header得到tag的类型和大小,然后将tag中剩余部分当作一个tag_xxx来处理。
-
(3)tag_start与tag_end。kernel接收到的传参是若干个tag构成的,这些tag由ATAG_CORE类型的tag起始,到ATAG_NONE类型的tag结束。
-
(4)tag传参的方式是由linux kernel发明的,kernel定义了这种向自身传参的方式,uboot只是实现了这种传参方式从而可以支持给kernel传参。(接口的依赖倒置)
2、内核如何接收tag参数
启动内核的代码:theKernel (0, machid, bd->bi_boot_params);
其中bd->bi_boot_params就是所有tag结构体所在的首地址,这个地址是保存在全局变量gd->bd中的,
在uboot启动的前期会指定内存地址用于存放tag结构体,然后在启动内核的时候传给内核,
内核拿到地址就会从该地址去遍历tag结构体,内核会判断tag的类型,如果是ATAG_CORE类型的tag则是起始的tag,
如果是ATAG_NONE则是最后一个tag结构体,不用再往后遍历。
3、tag结构体
struct tag_header {
u32 size; //结构体的大小
u32 tag; //结构体的类型
};
struct tag {
struct tag_header hdr;
union { //此枚举体包含了uboot传给内核参数的所有类型
struct tag_core core;
struct tag_mem32 mem;
struct tag_videotext videotext;
struct tag_ramdisk ramdisk;
struct tag_initrd initrd;
struct tag_serialnr serialnr;
struct tag_revision revision;
struct tag_videolfb videolfb;
struct tag_cmdline cmdline;
/*
* Acorn specific
*/
struct tag_acorn acorn;
/*
* DC21285 specific
*/
struct tag_memclk memclk;
struct tag_mtdpart mtdpart_info;
} u;
};
4、构建tag结构体
/* The list must start with an ATAG_CORE node */
#define ATAG_CORE 0x54410001
/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE 0x00000000
#define tag_size(type) ((sizeof(struct tag_header) + sizeof(struct type)) >> 2)
#define tag_next(t) ((struct tag *)((u32 *)(t) + (t)->hdr.size))
static struct tag *params;
static void setup_start_tag (bd_t *bd)
{
params = (struct tag *) bd->bi_boot_params;//bd->bi_boot_params是专门用于保存tag结构体的内存首地址
params->hdr.tag = ATAG_CORE; //ATAG_CORE类型是tag结构体的开始
params->hdr.size = tag_size (tag_core); //结构体的大小
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
params = tag_next (params); //将指针偏移params->hdr.size个字节,让params指向下一个可用的内存地址
}
`````````中间省略掉其他类型tag结构体的构建
static void setup_end_tag (bd_t *bd)
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
当你想实现相应的参数在uboot传输到kernel,比如uboot在设备树解析后,把里面的参数传输到kernel。那么你要在uboot和kernel都相应的添加,你参考已经存在的tag结构体添加解析,uboot中传递,内核中解析。(但是推荐设备树传递,比较方便。)
因此参数的传递其实也是通过地址的方式:uboot把内核复制到SDRAM之后,需要跳转到内核的入口函数执行。在跳转之前,还要给内核传递启动参数。传递方式是uboot把启动参数按一定的格式放在指定的地址(位于SDRAM),启动内核之后,内核再去这个地址上读取启动参数。
在uboot中,将cmdline统一放置在FDT中。FDT,flatted device tree,扁平设备树。熟悉linux的人对这个概念应该不陌生。
简单理解为将部分设备信息结构存放到device tree文件中。
2、Kernel怎么解析这个传过来的参数呢?
(1)、跳转linux kernel之前-准备cmdline
在跳转linux kernel之前(如uboot中),将cmdline数据放到了FDT中,然后将FDT的地址写入到了X0中。然后再跳转linux kernel.
请看kernel-4.14/Documentation/arm64/booting.txt
Before jumping into the kernel, the following conditions must be met:
- Quiesce all DMA capable devices so that memory does not get
corrupted by bogus network packets or disk data. This will save
you many hours of debug.
- Primary CPU general-purpose register settings
x0 = physical address of device tree blob (dtb) in system RAM.
x1 = 0 (reserved for future use)
x2 = 0 (reserved for future use)
x3 = 0 (reserved for future use)
(2)、kernel启动-解析cmdline
linux kernel从stext开始启动,整个流程大概就是读取X0(FDT地址)保存到X21中,又将X21保存到__fdt_pointer全局变量中
然后再将__fdt_pointer解析处cmdline数据到boot_command_line全局变量中。
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x21 stext() .. start_kernel() FDT pointer passed at boot in x0
* x23 stext() .. start_kernel() physical misalignment/KASLR offset
* x28 __create_page_tables() callee preserved temp register
* x19/x20 __primary_switch() callee preserved temp registers
*/
ENTRY(stext)
bl preserve_boot_args
bl el2_setup // Drop to EL1, w0=cpu_boot_mode
adrp x23, __PHYS_OFFSET
and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
bl set_cpu_boot_mode_flag
bl __create_page_tables
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
bl __cpu_setup // initialise processor
b __primary_switch
ENDPROC(stext)
这里调用了:
- preserve_boot_args
- __primary_switch
在preserve_boot_args将X0(fdt地址)暂时先保存到了X21中
preserve_boot_args:
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
dmb sy // needed before dc ivac with
// MMU off
mov x1, #0x20 // 4 x 8 bytes
b __inval_dcache_area // tail call
ENDPROC(preserve_boot_args)
__primary_switch调用了__primary_switched
__primary_switch:
#ifdef CONFIG_RANDOMIZE_BASE
mov x19, x0 // preserve new SCTLR_EL1 value
mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
#endif
bl __enable_mmu
#ifdef CONFIG_RELOCATABLE
bl __relocate_kernel
#ifdef CONFIG_RANDOMIZE_BASE
ldr x8, =__primary_switched
adrp x0, __PHYS_OFFSET
blr x8
__primary_switched将X21(fdt地址)保存到了__fdt_pointer全局变量中
__primary_switched:
adrp x4, init_thread_union
add sp, x4, #THREAD_SIZE
adr_l x5, init_task
msr sp_el0, x5 // Save thread_info
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp xzr, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
ldr_l x4, kimage_vaddr // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
// Clear BSS
adr_l x0, __bss_start
mov x1, xzr
adr_l x2, __bss_stop
sub x2, x2, x0
bl __pi_memset
dsb ishst // Make zero page visible to PTW
在setup_arch()的时候,调用setup_machine_fdt将fdt解析到了boot_command_line全局变量中
void __init setup_arch(char **cmdline_p)
{
pr_info("Boot CPU: AArch64 Processor [%08x]\n", read_cpuid_id());
......
*cmdline_p = boot_command_line;
......
setup_machine_fdt(__fdt_pointer);
......
}
setup_machine_fdt()—>early_init_dt_scan()—>early_init_dt_scan_nodes()
通过调用将fdt解析到了boot_command_line中,of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line)
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
void *dt_virt = fixmap_remap_fdt(dt_phys);
const char *name;
if (!dt_virt || !early_init_dt_scan(dt_virt)) {
pr_crit("\n"
"Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
"\nPlease check your bootloader.",
&dt_phys, dt_virt);
while (true)
cpu_relax();
}
name = of_flat_dt_get_machine_name();
if (!name)
return;
/* backward-compatibility for third-party applications */
machine_desc_set(name);
pr_info("Machine model: %s\n", name);
dump_stack_set_arch_desc("%s (DT)", name);
}
bool __init early_init_dt_scan(void *params)
{
bool status;
status = early_init_dt_verify(params);
if (!status)
return false;
early_init_dt_scan_nodes();
return true;
}
void __init early_init_dt_scan_nodes(void)
{
/* Retrieve various information from the /chosen node */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* Initialize {size,address}-cells info */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* Setup memory, calling early_init_dt_add_memory_arch */
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
}
在start_kernel()打印了cmdline.
asmlinkage __visible void __init start_kernel(void)
{
…
pr_notice(“Kernel command line: %s\n”, boot_command_line);
…
}