STM32感应开关盖垃圾桶

news2025/3/3 18:52:55

目录

项目需求

项目框图

​编辑

硬件清单  

sg90舵机介绍及实战

sg90舵机介绍

角度控制

SG90舵机编程实现

 超声波传感器介绍及实战

 超声波传感器介绍

 超声波编程实战

项目设计及实现


项目需求

  • 检测靠近时,垃圾桶自动开盖并伴随滴一声,2秒后关盖
  • 发生震动时,垃圾桶自动开盖并伴随滴一声,2秒后关盖
  • 按下按键时,垃圾桶自动开盖并伴随滴一声,2秒后关盖

项目框图

硬件清单  

SG90 舵机,超声波模块,震动传感器,蜂鸣器

sg90舵机介绍及实战

sg90舵机介绍

PWM波的频率不能太高,大约50HZ,即周期=1/频率=1/50=0.02s20ms左右。

确定周期/频率

 

如果周期为20ms,则 PSC=7199ARR=199  

角度控制

  • 0.5ms-------------0度; 2.5% 对应函数中CCRx5
  • 1.0ms------------45度; 5.0% 对应函数中CCRx10
  • 1.5ms------------90度; 7.5% 对应函数中CCRx15
  • 2.0ms-----------135度; 10.0% 对应函数中CCRx20
  • 2.5ms-----------180度; 12.5% 对应函数中CCRx25

SG90舵机编程实现

需求:
每隔 1s ,转动一个角度: 0 --> 45 --> 90 --> 135 --> 180 --> 0
接线:
HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_3);
while (1)
{
    HAL_Delay(1000);
    __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 5);
    HAL_Delay(1000);
    __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 10);
    HAL_Delay(1000);
    __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 15);
    HAL_Delay(1000);
    __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 20);
    HAL_Delay(1000);
    __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 25);
}

 超声波传感器介绍及实战

 超声波传感器介绍

 

  • 怎么让它发送波

Trig ,给Trig端口至少10us的高电平

  • 怎么知道它开始发了

Echo信号,由低电平跳转到高电平,表示开始发送波

  • 怎么知道接收了返回波

Echo,由高电平跳转回低电平,表示波回来了

  • 怎么算时间

Echo引脚维持高电平的时间!

  • 波发出去的那一下,开始启动定时器

波回来的拿一下,我们开始停止定时器,计算出中间经过多少时间

  • 怎么算距离

距离 = 速度 (340m/s* 时间/2

 超声波编程实战

需求:
使用超声波测距,当手离传感器距离小于 5cm 时, LED1 点亮,否则保持不亮状态。
接线:
Trig --- PB6
Echo --- PB7
LED1 --- PB8

定时器配置:

使用 TIM2 ,只用作计数功能,不用作定时。
PSC 配置为 71 ,则计数 1 次代表 1us

编写微秒级函数:

//使用TIM2来做us级延时函数
void TIM2_Delay_us(uint16_t n_us)
{
    /* 使能定时器2计数 */
    __HAL_TIM_ENABLE(&htim2);
    __HAL_TIM_SetCounter(&htim2, 0);
    while(__HAL_TIM_GetCounter(&htim2) < ((1 * n_us)-1) );
     /* 关闭定时器2计数 */
    __HAL_TIM_DISABLE(&htim2);
}

主函数:

//1. Trig ,给 Trig 端口至少 10us 的高电平 //2. echo 由低电平跳转到高电平,表示开始发送波 //
发出去的那一下,开始启动定时器 //3. 由高电平跳转回低电平,表示波回来了 // 波回来的那一
下,我们开始停止定时器 //4. 计算出中间经过多少时间 //5. 距离 = 速度 ( 340m/s * 时间 /2
(计数 1 次表示 1us // 500 毫秒测试一次距离
int cnt;
float distance;
while (1)
{
    //1. Trig ,给Trig端口至少10us的高电平
    HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);//拉高
    TIM2_Delay_us(20);
    HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET);//拉低
    //2. echo由低电平跳转到高电平,表示开始发送波
    //波发出去的那一下,开始启动定时器
    while(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_RESET);//等待输入电平拉高
    HAL_TIM_Base_Start(&htim2);
    __HAL_TIM_SetCounter(&htim2,0);
    //3. 由高电平跳转回低电平,表示波回来了
    while(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET);//等待输入电平变低
    //波回来的那一下,我们开始停止定时器
    HAL_TIM_Base_Stop(&htim2);
    //4. 计算出中间经过多少时间
    cnt = __HAL_TIM_GetCounter(&htim2);
    //5. 距离 = 速度 (340m/s)* 时间/2(计数1次表示1us)
    distance = cnt*340/2*0.000001*100; //单位:cm
    if(distance < 5)
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
    else
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
    //每500毫秒测试一次距离
    HAL_Delay(500);
}

项目设计及实现

项目设计
超声波模块:
Trig        --    PB6
Echo     -- PB7
sg90 舵机: PWM -- PB9
按键:
KEY1 -- PA0
LED 灯:
LED1 -- PB8
震动传感器:
D0 -- PB5
VCC -- 5V
蜂鸣器:
IO -- PB4
VCC -- 3V3
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define OPEN  1
#define CLOSE 0
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
char flag=CLOSE;
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

//使用TIM2来做us级延时函数
void TIM2_Delay_us(uint16_t n_us)
{
/* 使能定时器2计数 */
__HAL_TIM_ENABLE(&htim2);
__HAL_TIM_SetCounter(&htim2, 0);
while(__HAL_TIM_GetCounter(&htim2) < ((1 * n_us)-1) );
/* 关闭定时器2计数 */
__HAL_TIM_DISABLE(&htim2);
}
double get_distance()
{
		int cnt;
		//1. Trig ,给Trig端口至少10us的高电平
		HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);//拉高
		TIM2_Delay_us(20);
		HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET);//拉低
		//2. echo由低电平跳转到高电平,表示开始发送波
		//波发出去的那一下,开始启动定时器
		while(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_RESET);//等待输入电平拉高
		HAL_TIM_Base_Start(&htim2);
		__HAL_TIM_SetCounter(&htim2,0);
		//3. 由高电平跳转回低电平,表示波回来了
		while(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7) == GPIO_PIN_SET);//等待输入电平变低
		//波回来的那一下,我们开始停止定时器
		HAL_TIM_Base_Stop(&htim2);
		//4. 计算出中间经过多少时间
		cnt = __HAL_TIM_GetCounter(&htim2);
		//5. 距离 = 速度 (340m/s)* 时间/2(计数1次表示1us)
		return (cnt*340/2*0.000001*100); //单位:cm
}
void openStatusLight()
{
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
}
void closeStatusLight()
{
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
}
void initSG90_0()
{
	
	HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_4);//启动定时器4
	__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_4, 5);//将舵机置0°
}
void openDusbin()
{
	if(flag==CLOSE){
		flag=OPEN;
		__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_4, 15);//将舵机置90°
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_4,GPIO_PIN_RESET);
		HAL_Delay(100);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_4,GPIO_PIN_SET);
	}
	
	HAL_Delay(2000);
}

void closeDusbin()
{
	__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_4, 5);//将舵机置0°
	flag=CLOSE;
	HAL_Delay(150);
}

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
	if(GPIO_Pin==GPIO_PIN_0||GPIO_Pin==GPIO_PIN_5){
		if(HAL_GPIO_ReadPin(GPIOA,GPIO_PIN_0)==GPIO_PIN_RESET ||
			HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_5)==GPIO_PIN_RESET){
				openStatusLight();
				openDusbin();
			}
	}
		
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	float distance;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_TIM4_Init();
  /* USER CODE BEGIN 2 */
	initSG90_0();
	HAL_NVIC_SetPriority(SysTick_IRQn,0,0);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
		//超声波测距
		distance=get_distance();
		if(distance < 10){
			openStatusLight();
			//开盖
			openDusbin();
			
		}
			
		else{
			closeStatusLight();
			//关盖
			closeDusbin();
			
		}
			
		
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 71;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 65535;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief TIM4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM4_Init(void)
{

  /* USER CODE BEGIN TIM4_Init 0 */

  /* USER CODE END TIM4_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM4_Init 1 */

  /* USER CODE END TIM4_Init 1 */
  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 7199;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 199;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM4_Init 2 */

  /* USER CODE END TIM4_Init 2 */
  HAL_TIM_MspPostInit(&htim4);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4|GPIO_PIN_8, GPIO_PIN_SET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET);

  /*Configure GPIO pin : PA0 */
  GPIO_InitStruct.Pin = GPIO_PIN_0;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pins : PB4 PB6 PB8 */
  GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_6|GPIO_PIN_8;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : PB5 */
  GPIO_InitStruct.Pin = GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : PB7 */
  GPIO_InitStruct.Pin = GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI0_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI0_IRQn);

  HAL_NVIC_SetPriority(EXTI9_5_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/404567.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Hadoop入个门

文章目录1️⃣、Hadoop概述1.1、Hadoop是什么1.2、三大发行版本1.3、优势1.4、组成HDFSYARNMapReduceHDFS、YARN、MapReduce三者关系1.6、大数据技术生态体系image-202303111027195802️⃣、Hadoop运行环境搭建2.1、虚拟机环境准备2.2、克隆虚拟机2.3、在hadoop2上安装JDK2.4、…

cocoscreator+TS 遇到的问题

报错Can not preload the scene "game2" because it is not in the build settings.报错 1209, please go to https://github.com/cocos-creator/engine/blob/develop/EngineErrorMap.md#1209 to see details. Arguments: game2(env: Windows,mg,1.06.2303022; lib: …

掌握Shell脚本的if语句,让你的代码更加精准和高效

前言 大家好&#xff0c;我是沐风晓月&#xff0c;本文首发于csdn&#xff0c; 作者: 我是沐风晓月。 文章收录于 我是沐风晓月csdn专栏 【系统架构实战】专栏中的【shell脚本入门到精通】专栏。 本专栏从零基础带你层层深入&#xff0c;学会shell脚本&#xff0c;不是梦。 &…

核心系统国产平台迁移验证

核心系统国产平台迁移验证 摘要&#xff1a;信息技术应用创新&#xff0c;旨在实现信息技术领域的自主可控&#xff0c;保障国家信息安全。金融领域又是关系国家经济命脉的行业&#xff0c;而对核心交易系统的信息技术应用创新是交易所未来将要面临的重大挑战。为了推进国产化进…

云数据库RDS介绍

RDS介绍 关系型数据库&#xff08;relational database service&#xff0c;简称RDS&#xff09;&#xff0c;是一种可靠、可弹性伸缩的在线数据库服务。 1&#xff09;基于分布式文件系统和SSD盘高性能存储 2&#xff09;支持MySQL、SQL Server、PostgreSQL、MariaDB TX引擎 …

原来不用控制台,也可以轻松调试CSS呀

Ⅰ. 作用 用于调试CSS , 比控制台添更加方便&#xff0c;不需要寻找 &#xff1b;边添加样式&#xff0c;边可以查看效果&#xff0c;适合初学者对CSS 的理解和学习&#xff1b; Ⅱ. 快速实现&#xff08;两边&#xff09; ① 显示这个样式眶 给 head 和 style 标签添加一个…

YOLOS学习记录

在前面&#xff0c;博主已经完成了YOLOS项目的部署与调试任务&#xff0c;并在博主自己构造的数据集上进行了实验&#xff0c;实验结果表明效果并不显著&#xff0c;其实这一点并不意外&#xff0c;反而是在情理之中。众所周知&#xff0c;Transformer一直以来作为NLP领域的带头…

独立开发者案例:每周4h月入数万刀;国家数据局与时代红利;创业前先买个域名;工程师成长最重要的是什么 | ShowMeAI周刊

这是ShowMeAI周刊的第6期。聚焦AI领域本周热点&#xff0c;及其在各圈层泛起的涟漪&#xff1b;关注AI技术进步&#xff0c;并提供我们的商业洞察。欢迎关注与订阅&#xff01;&#x1f440;日报合辑 ⌛ 独立开发者案例&#xff1a;每周只工作4小时&#xff0c;独立开发者打造月…

Docker nginx安装使用

拉取镜像$ docker pull nginx默认会拉取仓库名为nginx&#xff0c;tag为latest的镜像。挂载nginx.conf文件首次启动nginx容器考虑到后面维护nginx配置文件nginx.conf的成本&#xff0c;这里采用docker 数据卷的技术&#xff0c;即将docker中的nginx.conf配置文件挂载到宿主机当…

嵌入式学习笔记——STM32的USART通信概述

文章目录前言常用通信协议分类及其特征介绍通信协议通信协议分类1.同步异步通信2.全双工/半双工/单工3.现场总线/板级总线4. 串行/并行通信5. 有线通信、无线通信STM32通信协议的配置方式使用通信协议控制器实现使用IO口模拟的方式实现STM32串口通信概述什么是串口通信STM32F40…

# YOLOv8测试(1)

YOLOv8测试&#xff08;1&#xff09;1. 训练最简流程1.1 安装包1.2 训练demo1.3 验证参考文献资料鉴于网络上的太多教程&#xff0c;都太过繁琐了。其实之前也用过YOLOv2 v3版本&#xff0c;但很久没用&#xff0c;找了一圈教程多少有坑&#xff0c;想想还是自己整理一版吧。花…

测开:vue高级特性

vue官网地址&#xff1a; Vue.js - 渐进式 JavaScript 框架 | Vue.js 上一章节&#xff1a; 测开&#xff1a;vue基本语法_做测试的喵酱的博客-CSDN博客 一、vue事件修饰符 1.1 stop: 阻止事件冒泡 事件冒泡&#xff1a;子元素触发某个事件之后&#xff0c;会依次将这个事…

用DQN实现Atari game(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f468;‍&#x1f4bb;4 Matlab代码 &#x1f4a5;1 概述 强化学习研究的是Agent和环境交互中如何学习最优策略&#xff0c;以获得最大收益。Agent需要能够观察环境(observe)所处的状态&…

组播IP 映射 组播MAC

组播IP地址与组播MAC地址之间的换算方法与例子 1、在IP分类中&#xff0c;D类IP地址用于组播MAC。 2、在TCP/IP中&#xff0c;最常用的v4组播MAC地址的前24位固定为01005e&#xff0c;第25位固定为0&#xff0c;后23位由IP地址的后23位复制得出。 3、在D类组播IP中有5位未用&a…

Spark-行动算子

1、reduce&#xff08;聚合&#xff09; 2、collect&#xff08;采集&#xff09; 3、count &#xff08;统计&#xff09; 4、first 5、take 6、takeOrdered 7、aggregate 8、fold 9、countByKey 10、countByValue 11、save 算子 12、foreach 算子总结 所谓行…

java编程----继承

文章目录内存管理继承super向上造型内存管理 编写的xxx.java源码&#xff0c;编译为xxx.class字节码&#xff0c;由JVM&#xff08;java解释器&#xff09;来执行&#xff0c;JVM来对接不同的操作系统&#xff0c;实现一次编写&#xff0c;到处执行&#xff1b;JVM向操作系统申…

王朝游戏源码服务端与客户端搭建(基于nodejs与cocoscreator)

成功效果:搭建步骤:安装centos7 64 2009版本操作系统下载并解压mongodb,redis,nodejs3.复制游戏服务与网站服务程序到服务器4.编译nodejsnodejs编译并安装成功后验证5.配置并启动mongodb数据库mongodb.conf配置文件内容:dbpath/home/dev/mongodb/db logpath/home/dev/mongodb/l…

八、发布确认高级

在生产环境中由于一些不明原因&#xff0c;导致 rabbitmq 重启&#xff0c;在 RabbitMQ 重启期间生产者消息投递失败&#xff0c;导致消息丢失&#xff0c;需要手动处理和恢复 如何才能进行 RabbitMQ 的消息可靠投递呢&#xff1f;特别是在这样比较极端的情况&#xff0c;Rabb…

20230311给Ubuntu18.04下的GTX1080M安装驱动

20230311给Ubuntu18.04下的GTX1080M安装驱动 2023/3/11 12:50 2. 安装GTX1080驱动 安装 Nvidia 驱动 367.27 sudo add-apt-repository ppa:graphics-drivers/ppa 第一次运行出现如下的警告&#xff1a; Fresh drivers from upstream, currently shipping Nvidia. ## Curren…

C++语法规则4(C++面向对象)

接口&#xff08;抽象类&#xff09; 接口描述了类的行为和功能&#xff0c;而不需要完成类的特定实现。C 接口是使用抽象类来实现的&#xff0c;抽象类与数据抽象互不混淆&#xff0c;数据抽象是一个把实现细节与相关的数据分离开的概念。 如果类中至少有一个函数被声明为纯虚…