opencv-图像操作

news2024/11/26 9:49:47

访问和修改像素值

我们先加载一个彩色图像:

import cv2

img = cv2.imread('b.png')
print(img)

########### 打印结果 ########### 
[[[243 243 243]
  [243 243 243]
  [243 243 243]
  ...
  [243 243 243]
  [243 243 243]
  [243 243 243]]
  
 [[243 243 243]
  [243 243 243]
  [243 243 243]
  ...
  [243 243 243]
  [243 243 243]
  [243 243 243]]]

如果imread()方法中,flags传递值为-1,那么将加载alpha通道,那么最里层的数组长度将会是3,打印结果如下:

[[[243 243 243 255]
  [243 243 243 255]
  [243 243 243 255]
  ...
  [243 243 243 255]
  [243 243 243 255]
  [243 243 243 255]]

 [[243 243 243 255]
  [243 243 243 255]
  [243 243 243 255]
  ...
  [243 243 243 255]
  [243 243 243 255]
  [243 243 243 255]]]

如果传递值为0,那么将加载灰色图像,打印结果将会是这样:

[[243 243 243 ... 243 243 243]
 [243 243 243 ... 243 243 243]
 [243 243 243 ... 243 243 243]
 ...
 [243 243 243 ... 243 243 243]
 [243 243 243 ... 243 243 243]
 [243 243 243 ... 243 243 243]]

我们以彩色图像为例,我们可以通过像素值的行和列坐标来访问它:

px = img[100, 100]
print(type(px), px)         # <class 'numpy.ndarray'> [255 255 255]

# 只访问蓝色像素
px = img[100, 100, 0]
print(type(px), px)         # <class 'numpy.uint8'> 255

我们还可以使用更加优雅的方式来修改它,如下:

# 访问红色像素
px = img.item(100, 100, 2)
print(type(px), px)         # <class 'int'> 255

# 
img.itemset((100, 100, 2), 100)
px = img.item(100, 100, 2)
print(type(px), px)         # <class 'int'> 100

访问图像属性

图像属性包括行数、列数和通道数、图像数据类型、像素数等

shape = img.shape               # 加载彩色图片,返回一个包含行数、列数和通道数的元组
print(type(shape), shape)       # <class 'tuple'> (584, 870, 3)

shape = img.shape               # 加载灰色图片,返回一个包含行数、列数的元组
print(type(shape), shape)       # <class 'tuple'> (584, 870)

shape = img.shape               # 加载alpha通道,返回一个包含行数、列数和通道数的元组
print(type(shape), shape)       # <class 'tuple'> (584, 870, 4)

总像素数由img.size属性获取:

size = img.size
print(type(size), size)         # <class 'int'> 1524240

图像数据类型由img.dtype熟悉获取:

dtype = img.dtype
print(type(dtype), dtype)       # <class 'numpy.dtype[uint8]'> uint8

ROI

这里我们将Baidu的Logo进行修改一下,将"百度"二字,用"Bai"替换,如下:

import cv2
from copy import copy
from matplotlib import pyplot as plt

img1 = cv2.imread('tt.png', 1)
img2 = copy(img1)
img2[90:165, 313: 458] = img2[90:165, 35:180]
# 121, 1行2列第1个通道
plt.subplot(121),plt.imshow(img1, 'gray'),plt.title('img1')
# 122, 1行2列第2个通道
plt.subplot(122),plt.imshow(img2, 'gray'),plt.title('img2')
plt.show()

效果如下:

2YSVB9.png

为图像创建边框

如果需要在图像周围创建边框,例如相框,可以使用cv2.copyMakeBorder()函数。copyMakeBorder(src, top, bottom, left, right, borderType, dst=None, value=None)常用参数解释如下:

  • src: 输入图像
  • top, bottom, left, right: 上下左右4个边框宽度,单位:px
  • borderType: 边框类型
    • cv2.BORDER_CONSTANT: 彩色边框
    • cv2.BORDER_REFLECT: 边框元素的镜像
    • cv2.BORDER_REFLECT_101或cv2.BORDER_DEFAULT
    • cv2.BORDER_REPLICATE: 最后一个元素被复制
    • cv2.BORDER_WRAP
  • value: 如果边框类型为cv2.BORDER_CONSTANT的边框颜色
import cv2

img = cv2.imread('tt.png', 1)
# 设置边框颜色为蓝色
img = cv2.copyMakeBorder(img, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 0, 0])
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像融合

这也是一种图像加法,但是给图像不同的权重,从而给人一种混合而透明的感觉,我们可以使用cv2.addWeighted()函数来实现。addWeighted(src1, alpha, src2, beta, gamma, dst=None, dtype=None)常用参数解释如下:

  • src1: 输入图像1
  • alpha: 输入图像1的权重
  • src2: 输入图像2
  • beta: 输入图像2的权重
  • gamma: 标量,用于加到每个和上
  • dst: 输出图像
  • dtype
import cv2 
from matplotlib import pyplot as plt

img1 = cv2.imread('img1')
img2 = cv2.imread('img2')
dst = cv2.addWeighted(img1, 0.7, img2, 0.3, 0)
# 131, 1行3列第1个通道
plt.subplot(131),plt.imshow(img1, 'gray'),plt.title('img1')
# 132, 1行3列第2个通道
plt.subplot(132),plt.imshow(img2, 'gray'),plt.title('img2')
# 133, 1行3列第3个通道
plt.subplot(133),plt.imshow(dst, 'gray'),plt.title('dst')
plt.show()

效果如下:

2JxDG8.png

值得注意的是,img1与img2必须行数、列数和通道数一致!!!

为图片添加水印

我们想将opencv的logo放置在给定的背景图的右下方,如果我添加两个图像,它会改变颜色。如果我混合它,我会得到一个透明的效果。但我希望它是不透明的。如果它是一个矩形区域,我可以像上一章那样使用 ROI。但是 OpenCV 徽标不是矩形。所以你可以用按位运算来做到这一点,如下所示:

import cv2 
from matplotlib import pyplot as plt

liushishi = cv2.imread('liushishi.png')
logo = cv2.imread('logo.png')
liushishi_height, liushishi_width = liushishi.shape[:2]
plt.subplot(331),plt.imshow(liushishi, 'gray'),plt.title('liushishi')
logo_height, logo_width = logo.shape[:2]
logo = cv2.resize(logo, (int(0.3 * logo_width), int(0.3 * logo_height)), interpolation=cv2.INTER_CUBIC)
logo_height, logo_width = logo.shape[:2]
roi = liushishi[liushishi_height - logo_height - 15:liushishi_height - 15, liushishi_width - logo_width - 15:liushishi_width - 15]
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(logo_gray, 230, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
liushishi_bg_1 = cv2.bitwise_and(roi, roi, mask=mask)
liushishi_bg_2 = cv2.bitwise_and(logo, logo, mask=mask_inv)
dst = cv2.add(liushishi_bg_1, liushishi_bg_2)
liushishi[liushishi_height - logo_height - 15:liushishi_height - 15, liushishi_width - logo_width - 15:liushishi_width - 15] = dst

plt.subplot(332),plt.imshow(logo, 'gray'),plt.title('logo')
plt.subplot(333),plt.imshow(logo_gray, 'gray'),plt.title('logo_gray')
plt.subplot(334),plt.imshow(mask, 'gray'),plt.title('mask')
plt.subplot(335),plt.imshow(mask_inv, 'gray'),plt.title('mask_inv')
plt.subplot(336),plt.imshow(liushishi_bg_1, 'gray'),plt.title('liushishi_bg_1')
plt.subplot(337),plt.imshow(liushishi_bg_2, 'gray'),plt.title('liushishi_bg_2')
plt.subplot(338),plt.imshow(dst, 'gray'),plt.title('dst')
plt.subplot(339),plt.imshow(liushishi, 'gray'),plt.title('liushishi')
plt.show()

效果如下:

2038NF.png

请看最后一张图,可以看到,我们的opencv的logo已经放置在图片的右下角了!这里为了方便演示各种操作之后的图片变化,所以将所有的图片都放置在一起展示,有一些色差,我们可以通过cv2.imshow()展示最后操作的背景图,就可以很直观的看到效果了!

这里,我们用到了好几个函数,现在我们来讲一下他们的用法:

resize

修改图片的尺寸。resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)参数详解如下:

  • src: 输入图像
  • dsize: 修改后的图片宽高
  • dst: 输出图像
  • fx: 比例因子(宽度),0.5表示宽度缩放成原来的一半
  • fy: 比例因子(高度),0.5表示高度缩放成原来的一半
  • interpolation: 插值法

cvtColor

该函数将输入图像从一个颜色空间转换为另一个颜色空间。cvtColor(src, code, dst=None, dstCn=None)参数详解如下:

  • src: 输入图像
  • code: 颜色空间转换码
  • dst: 输出图像
  • dstCn: 目标图像中的通道数

threshold

隔离图像上像素的边缘,上面代码中将大于230像素的值置为0,小于的置为255。threshold(src, thresh, maxval, type, dst=None)参数详解如下:

  • src: 输入图像
  • thresh: 阈值
  • maxval: 使用#THRESH_BINARY和#THRESH_BINARY_INV阈值的最大值
  • type: 阈值类型
  • dst: 输出图像

bitwise_not

反转上面的图像创建掩码。bitwise_not(src, dst=None, mask=None)参数详解如下:

  • src: 输入图像
  • dst: 输出图像
  • mask: 掩码

bitwise_and

使用位“与”运算来叠加。bitwise_and(src1, src2, dst=None, mask=None)参数详解如下:

  • src1: 输入图像1
  • src2: 输入图像2
  • dst: 输出图像
  • mask: 掩码

add

图像叠加。add(src1, src2, dst=None, mask=None, dtype=None)参数详解如下:

  • src1: 输入图像1
  • src2: 输入图像2
  • dst: 输出图像
  • mask: 掩码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/403103.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每天五分钟机器学习:你理解贝叶斯公式吗?

本文重点 贝叶斯算法是机器学习算法中非常经典的算法,也是非常古老的一个算法,但是它至今仍然发挥着重大的作用,本节课程及其以后的专栏将会对贝叶斯算法来做一个简单的介绍。 贝叶斯公式 贝叶斯公式是由联合概率推导而来 其中p(Y|X)称为后验概率,P(Y)称为先验概率…

mysql navicat忘记密码

mysql忘记密码是常用的事情&#xff0c;那么如何解决它呢&#xff1f;1、首先将MySQL的服务关闭&#xff0c;两种方法&#xff1a;&#xff08;1&#xff09;打开命令行cmd输入net stop mysql命令即可关闭MySQL服务。&#xff08;2&#xff09;打开任务管理器&#xff0c;找到服…

【观察】亚信科技:“飞轮效应”背后的数智化创新“延长线”

著名管理学家吉姆柯林斯在《从优秀到卓越》一书中提出“飞轮效应”&#xff0c;它指的是为了使静止的飞轮转动起来&#xff0c;一开始必须使很大的力气&#xff0c;每转一圈都很费力&#xff0c;但达到某一临界点后&#xff0c;飞轮的重力和冲力就会成为推动力的一部分&#xf…

海思ubootsd卡协议

在start_armboot()函数中调用mmc_initialize(0)初始化mmc;最终调用到int hi_mci_initialize(unsigned int dev_num)函数;内容如下:static int hi_mci_initialize(unsigned int dev_num) {struct mmc *mmc NULL;static struct himci_host *host;unsigned int regval;unsigned l…

磨皮插件portraiture2023最新中文版

Portraiture滤镜是一款 Photoshop&#xff0c;Lightroom 和 Aperture 插件&#xff0c;DobeLighttroom 的 Portraiture 消除了选择性掩蔽和逐像素处理的繁琐的手工劳动&#xff0c;以帮助您在肖像修整方面取得卓越的效果。它是一个强大的&#xff0c;但用户友好的插件照明.这是…

深度解析首个Layer3 链 Nautilus Chain,有何优势?

以流支付为主要概念的Zebec生态&#xff0c;正在推动流支付这种新兴的支付方式向更远的方向发展&#xff0c;该生态最初以Zebec Protocol的形态发展&#xff0c;并从初期的Solana进一步拓展至BNB Chian以及Near上。与此同时&#xff0c;Zebec生态也在积极的寻求从协议形态向公链…

观察UE4里“在外部存储Actor”功能的基础行为

目标 一般情况下&#xff0c;Actor保存于关卡文件中。 但是&#xff0c;如果将Actor的 packaging mode 设置为 External&#xff1a; 则此Actor就会存储在另一个文件而非关卡文件中。 本篇目标是&#xff1a; 观察此功能的基础行为观察外部文件的路径名规则 “在外部存储A…

Nacos安装指南,Windows安装

Nacos安装指南 1.Windows安装 1.1.下载安装包 在Nacos的GitHub页面&#xff0c;提供有下载链接&#xff0c;可以下载编译好的Nacos服务端或者源代码&#xff1a; GitHub主页&#xff1a;https://github.com/alibaba/nacos GitHub的Release下载页&#xff1a;https://githu…

一文打通Sleuth+Zipkin 服务链路追踪

1、为什么用 微服务架构是一个分布式架构&#xff0c;它按业务划分服务单元&#xff0c;一个分布式系统往往有很多个服务单元。由于服务单元数量众多&#xff0c;业务的复杂性&#xff0c;如果出现了错误和异常&#xff0c;很难去定位。主要体现在&#xff0c;一个请求可能需要…

学习服务器上运行论文代码(二)

文章目录程序运行异常VScode 报shell集成无法激活的问题无法加载文件 C:\Users\haoqi\Documents\WindowsPowerShell\profile.ps1&#xff0c;连接服务器插件程序运行异常 书接上回。 程序能跑起来&#xff0c;但是会出现两种异常。 异常一&#xff1a;运行进度条在走&#xff…

Lambda表达式和steram流

目录 引言&#xff1a; 语法: Lambda 表达式实例&#xff1a; demo演示&#xff1a; Stream流&#xff1a; 引言&#xff1a; Lambda 表达式&#xff0c;也可称为闭包&#xff0c;它是推动 Java 8 发布的最重要新特性。 Lambda 允许把函数作为一个方法的参数&#xff08;函…

Redis技术分享——缓存常见应用场景问题?

什么是redis&#xff1f; Redis是Remote Dictionary Server的简称&#xff0c;是一个由意大利人Salvatore Sanfilippo开发的key-value存储系统&#xff0c;具有极高的读写性能&#xff0c;读的速度可达110000次/s&#xff0c;写的速度可达81000次/s 。今天主要是分享redis的缓…

Excel查找函数(VLOOKUP\SEARCH\FIND\MATCH)

文章目录查找纵向VLOOKUP函数eg1已知身份证查姓名eg2已知身份证查地区Find函数FindB函数SEARCH函数SEARCHBMATCH函数查找 纵向VLOOKUP函数 VLOOKUP(lookup_value,table_array,col_index_num,[range_lookup])lookup_value&#xff1a;要查找的值 table_array&#xff1a;要查找…

【测试】性能测试

努力经营当下&#xff0c;直至未来明朗&#xff01; 文章目录目标一、性能测试概述二、常见的性能测试指标三、性能测试的分类四、loadrunner工具介绍&#xff08;LR&#xff09;一&#xff09;VUG&#xff1a;虚拟用户发生器二&#xff09;Controller三&#xff09;Analysis小…

vector的使用及模拟实现

目录 一.vector的介绍及使用 1.vector的介绍 2.vector的使用 1.vector的定义 2.vector iterator的使用 3. vector 空间增长问题 4.vector 增删查改 3.vector 迭代器失效问题&#xff08;重点&#xff09; 1. 会引起其底层空间改变的操作 2.指定位置元素的删除操作--erase 3. Li…

python 从0到批量下载某站视频

简介&#xff1a;真实从0到1&#xff0c;童叟无欺&#xff5e; 目标&#xff1a;用python批量下载某站搜索视频&#xff0c;以“CG 服装”为例 本章主要介绍如何用python把搜索到的视频直接下载到自己的本地文件夹中&#xff5e; 介绍一下工作流1. 下载并安装python2. 测试pyt…

Ansible自动运维————实验

0、创建新的虚拟机&#xff0c;使用镜像RHEL8.5,要求/boot目录为512N&#xff0c;/home目录为1Gb&#xff0c;交换空间为2Gb&#xff0c;其他空间给&#xff09;目录。1、将该主机作为 Ansible 控制节点&#xff0c;克隆该虚拟机&#xff0c;将克隆的虚拟机作为受控节点&#x…

Koa源码学习

前言 koa是一个非常流行的Node.js http框架。本文我们来学习下它的使用和相关源码 来自官网的介绍&#xff1a; Koa 是一个新的 web 框架&#xff0c;由 Express 幕后的原班人马打造&#xff0c; 致力于成为 web 应用和 API 开发领域中的一个更小、更富有表现力、更健壮的基石。…

【数据分析】Excel必备函数汇总

文章目录求和单条件求和SUMIF多条件求和SUMIFS求平均AVERAGE单条件多条件查找纵向VLOOKUP函数eg1已知身份证查姓名eg2已知身份证查地区Find函数FindB函数SEARCH函数SEARCHBMATCH函数Subtotal函数最值小数点去小数点TRUNC四舍五入ROUND随机数求余奇偶统计条件多条件时间当前日期…

LearnOpenGL-光照-5.投光物

本人刚学OpenGL不久且自学&#xff0c;文中定有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/LearnOpenGLProject 文章目录投光物平行光点光源聚光不平滑的例子平滑例子投光物 前面几节使用的光照都来自于空间中的一个点 即…