vector的使用及模拟实现

news2025/1/11 21:43:44

目录

一.vector的介绍及使用

1.vector的介绍

2.vector的使用

1.vector的定义

 2.vector iterator的使用

3. vector 空间增长问题

4.vector 增删查改

3.vector 迭代器失效问题(重点)

1. 会引起其底层空间改变的操作

2.指定位置元素的删除操作--erase

3. Linux下,g++编译器对迭代器的处理情况。

二.vector深度剖析及模拟实现

1.std::vector的核心框架接口的模拟实现

2. 使用memcpy拷贝问题

3.动态二维数组理解



一.vector的介绍及使用

1.vector的介绍

1. vector是表示可变大小数组的序列容器。
2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是 一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完的。
5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list 统一的迭代器和引用更好。

2.vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以了。

1.vector的定义

 2.vector iterator的使用

 

 注意:所有的迭代器区间都是左闭右开,且不光可以传vector的迭代器,还可以传其他类型的迭代器,只要类型可以匹配。

下面是代码演示

void Print(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

3. vector 空间增长问题

 

1.capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
2.resize在开空间的同时还会进行初始化,影响size
3.reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVector()
{
     vector<int> v;
     size_t sz = v.capacity();
     v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
     cout << "making bar grow:\n";
     for (int i = 0; i < 100; ++i) 
     {
     v.push_back(i);
     if (sz != v.capacity())
     {
     sz = v.capacity();
     cout << "capacity changed: " << sz << '\n';
     }
     }
}

 通过测试发现提前开好了空间,capacity已经变成了100。

4.vector 增删查改

 重要的函数接口参数

void push_back (const value_type& val);

void pop_back();

template <class InputIterator, class T>   
InputIterator find (InputIterator first, InputIterator last, const T& val);

iterator insert (iterator position, const value_type& val);
void insert (iterator position, size_type n, const value_type& val);

iterator erase (iterator position);iterator erase (iterator first, iterator last);

3.vector 迭代器失效问题(重点)

迭代器的使用特别广泛,迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

1. 会引起其底层空间改变的操作

比如:resize、reserve、insert、assign、push_back等,都有可能造成迭代器失效

#include <iostream>
using namespace std;
#include <vector>
int main()
{
  vector<int> v{1,2,3,4,5,6};
  auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
 // v.resize(100, 8);
 
 // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
 // v.reserve(100);
 
 // 插入元素期间,可能会引起扩容,而导致原空间被释放
 // v.insert(v.begin(), 0);
 // v.push_back(8);
 
 // 给vector重新赋值,可能会引起底层容量改变

  v.assign(100, 8);
  while(it != v.end())
  {
  cout<< *it << " " ;
  ++it;
  }
  cout<<endl;
  return 0;
}
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。

2.指定位置元素的删除操作--erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{
 int a[] = { 1, 2, 3, 4 };
 vector<int> v(a, a + sizeof(a) / sizeof(int));
 // 使用find查找3所在位置的iterator
 vector<int>::iterator pos = find(v.begin(), v.end(), 3);
 // 删除pos位置的数据,导致pos迭代器失效。
 v.erase(pos);
 cout << *pos << endl; // 此处会导致非法访问
 return 0;
}
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?
#include <iostream>
using namespace std;
#include <vector>
int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 {
 if (*it % 2 == 0)
 v.erase(it);
 ++it;
 } 
 return 0;
}


int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 {
 if (*it % 2 == 0)
 it = v.erase(it);    //返回一个迭代器,指向删除数据的下一个位置
 else
 ++it;
 }
 return 0;
}

第一个代码是错误的,会造成迭代器失效,且其删除逻辑是不对的。以上面的代码为例,当程序删除“2”以后,pos位置会变成“3”,然后it++,迭代器就指向了4,就错过了对3的判断,且最后一个是偶数4,删除以后,迭代器会超过_finish,导致it永远不会==v.end()。

3. Linux下,g++编译器对迭代器的处理情况。

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
 vector<int> v{1,2,3,4,5};
 auto it = v.begin();
 cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
 // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
 v.reserve(100);
 cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
 // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
 // 虽然可能运行,但是输出的结果是不对的
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}
输出:
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5


// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
 vector<int> v{1,2,3,4,5};
 vector<int>::iterator it = find(v.begin(), v.end(), 3);
 v.erase(it);
cout << *it << endl;
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}

程序可以正常运行,并打印:
4
4 5



// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
 vector<int> v{1,2,3,4,5};
 // vector<int> v{1,2,3,4,5,6};
 auto it = v.begin();
 while(it != v.end())
 {
 if(*it % 2 == 0)
 v.erase(it);
 ++it;
 }
 for(auto e : v)
 cout << e << " ";
 cout << endl;
 return 0;
}

从上述三个例子中可以看到:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端,SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

二.vector深度剖析及模拟实现

 

1.std::vector的核心框架接口的模拟实现

#pragma once

#include <iostream>
using namespace std;
#include <assert.h>


namespace Kevin
{
	template<class T>
	class vector
	{
	public:
		// Vector的迭代器是一个原生指针
		typedef T* iterator;
		typedef const T* const_iterator;

		///
		// 构造和销毁
		vector()
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{}

		vector(size_t n, const T& value = T())
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(n);
			while (n--)
			{
				push_back(value);
			}
		}

		/*
		* 理论上将,提供了vector(size_t n, const T& value = T())之后
		* vector(int n, const T& value = T())就不需要提供了,但是对于:
		* vector<int> v(10, 5);
		* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
		* 就不会走vector(size_t n, const T& value = T())这个构造方法,
		* 最终选择的是:vector(InputIterator first, InputIterator last)
		* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
		* 但是10和5根本不是一个区间,编译时就报错了
		* 故需要增加该构造方法
		*/
		vector(int n, const T& value = T())
			: _start(new T[n])
			, _finish(_start+n)
			, _endOfStorage(_finish)
		{
			for (int i = 0; i < n; ++i)
			{
				_start[i] = value;
			}
		}

		// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
		// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
		template<class InputIterator>
		vector(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		vector(const vector<T>& v)
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(v.capacity());
			iterator it = begin();
			const_iterator vit = v.cbegin();
			while (vit != v.cend())
			{
				*it++ = *vit++;
			}
			_finish = it;
		}

		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}

		~vector()
		{
			if (_start)
			{
				delete[] _start;
				_start = _finish = _endOfStorage = nullptr;
			}
		}

		/
		// 迭代器相关
		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator cbegin() const
		{
			return _start;
		}

		const_iterator cend() const
		{
			return _finish;
		}

		//
		// 容量相关
		size_t size() const 
		{ 
			return _finish - _start; 
		}

		size_t capacity() const 
		{ 
			return _endOfStorage - _start; 
		}

		bool empty() const 
		{ 
			return _start == _finish; 
		}

		void reserve(size_t n)
		{
			if (n > capacity())
			{
				size_t oldSize = size();
				// 1. 开辟新空间
				T* tmp = new T[n];

				// 2. 拷贝元素
		        // 这里直接使用memcpy会有问题吗?同学们思考下
		        //if (_start)
		        //	memcpy(tmp, _start, sizeof(T)*size);

				if (_start)
				{
					for (size_t i = 0; i < oldSize; ++i)
						tmp[i] = _start[i];

					// 3. 释放旧空间
					delete[] _start;
				}

				_start = tmp;
				_finish = _start + oldSize;
				_endOfStorage = _start + n;
			}
		}

		void resize(size_t n, const T& value = T())
		{
			// 1.如果n小于当前的size,则数据个数缩小到n
			if (n <= size())
			{
				_finish = _start + n;
				return;
			}

			// 2.空间不够则增容
			if (n > capacity())
				reserve(n);

			// 3.将size扩大到n
			iterator it = _finish;
			_finish = _start + n;
			while (it != _finish)
			{
				*it = value;
				++it;
			}
		}

		///
		// 元素访问
		T& operator[](size_t pos) 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		const T& operator[](size_t pos)const 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		T& front()
		{
			return *_start;
		}

		const T& front()const
		{
			return *_start;
		}

		T& back()
		{
			return *(_finish - 1);
		}

		const T& back()const
		{
			return *(_finish - 1);
		}
		/
		// vector的修改操作
		void push_back(const T& x) 
		{ 
			insert(end(), x); 
		}

		void pop_back() 
		{ 
			erase(end() - 1); 
		}

		void swap(vector<T>& v)
		{
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_endOfStorage, v._endOfStorage);
		}

		iterator insert(iterator pos, const T& x)
		{
			assert(pos <= _finish);

			// 空间不够先进行增容
			if (_finish == _endOfStorage)
			{
				//size_t size = size();
				size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
				reserve(newCapacity);

				// 如果发生了增容,需要重置pos
				pos = _start + size();
			}

			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				--end;
			}

			*pos = x;
			++_finish;
			return pos;
		}

		// 返回删除数据的下一个数据
		// 方便解决:一边遍历一边删除的迭代器失效问题
		iterator erase(iterator pos)
		{
			// 挪动数据进行删除
			iterator begin = pos + 1;
			while (begin != _finish) {
				*(begin - 1) = *begin;
				++begin;
			}

			--_finish;
			return pos;
		}
	private:
		iterator _start;		// 指向数据块的开始
		iterator _finish;		// 指向有效数据的尾
		iterator _endOfStorage;  // 指向存储容量的尾
	};
}

2. 使用memcpy拷贝问题

int main()
{
 bite::vector<bite::string> v;
 v.push_back("1111");
 v.push_back("2222");
 v.push_back("3333");
 return 0;
}

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,上面的代码会有什么问题吗?

 

插入“2222”,需要开辟新空间。

 

memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中

如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。

 结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是 浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。

3.动态二维数组理解

vector<vector<int>> vv(n);
构造一个 vv 动态二维数组, vv 中总共有 n 个元素,每个元素都是 vector 类型的,每行没有包含任何元素,如果n 5 时如下所示:

完成元素填充后,如下图:

使用标准库中 vector 构建动态二维数组时与上图实际是一致的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/403079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python 从0到批量下载某站视频

简介&#xff1a;真实从0到1&#xff0c;童叟无欺&#xff5e; 目标&#xff1a;用python批量下载某站搜索视频&#xff0c;以“CG 服装”为例 本章主要介绍如何用python把搜索到的视频直接下载到自己的本地文件夹中&#xff5e; 介绍一下工作流1. 下载并安装python2. 测试pyt…

Ansible自动运维————实验

0、创建新的虚拟机&#xff0c;使用镜像RHEL8.5,要求/boot目录为512N&#xff0c;/home目录为1Gb&#xff0c;交换空间为2Gb&#xff0c;其他空间给&#xff09;目录。1、将该主机作为 Ansible 控制节点&#xff0c;克隆该虚拟机&#xff0c;将克隆的虚拟机作为受控节点&#x…

Koa源码学习

前言 koa是一个非常流行的Node.js http框架。本文我们来学习下它的使用和相关源码 来自官网的介绍&#xff1a; Koa 是一个新的 web 框架&#xff0c;由 Express 幕后的原班人马打造&#xff0c; 致力于成为 web 应用和 API 开发领域中的一个更小、更富有表现力、更健壮的基石。…

【数据分析】Excel必备函数汇总

文章目录求和单条件求和SUMIF多条件求和SUMIFS求平均AVERAGE单条件多条件查找纵向VLOOKUP函数eg1已知身份证查姓名eg2已知身份证查地区Find函数FindB函数SEARCH函数SEARCHBMATCH函数Subtotal函数最值小数点去小数点TRUNC四舍五入ROUND随机数求余奇偶统计条件多条件时间当前日期…

LearnOpenGL-光照-5.投光物

本人刚学OpenGL不久且自学&#xff0c;文中定有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/LearnOpenGLProject 文章目录投光物平行光点光源聚光不平滑的例子平滑例子投光物 前面几节使用的光照都来自于空间中的一个点 即…

IR 808 Alkyne,IR-808 alkyne,IR 808炔烃,近红外吲哚类花菁染料

【产品理化指标】&#xff1a;中文名&#xff1a;IR-808炔烃英文名&#xff1a;IR-808 alkyne&#xff0c;Alkyne 808-IR CAS号&#xff1a;N/AIR-808结构式&#xff1a;规格包装&#xff1a;10mg&#xff0c;25mg&#xff0c;50mg&#xff0c;接受各种复杂PEGS定制服务&#x…

Git的下载、安装、配置、使用、卸载

前言 我是跟着狂神老师学的。该博客仅用于笔记所用。 下面是老师的B站和笔记 B站&#xff1a;https://www.bilibili.com/video/BV1FE411P7B3?p1&vd_source9266cf72b1f398b63abe0aefe358d7d6 笔记&#xff1a;https://mp.weixin.qq.com/s/Bf7uVhGiu47uOELjmC5uXQ 一、准备工…

【18】组合逻辑 - VL18 实现3-8译码器①

VL18 实现3-8译码器① 1 题目 【这题我的思路非常绝境】奈斯 !! 看真值表的思路:Yi所在列【0仅一个其余全1】,故【以0为对象求解】 观察发现:E3 E2_n E1_n = 100 时 是 译码的使能信号 ; 并且E3 E2_n E1_n为其他值时,都不使能译码 然后就很简单,没有仿真就成功了 2 代…

Linux:文件流指针 与 文件描述符

目录一、文件描述符二、文件流指针三、缓冲区之前讲解过了IO库函数和IO接口&#xff0c;库函数是对系统调用接口的封装&#xff0c;也就是说实际上在库函数内部是通过调用系统调用接口来完成最终功能的。 库函数通过文件流指针操作文件&#xff0c;系统调用接口通过文件描述符操…

在一个web应用中应该如何完成资源的跳转

在一个web应用中通过两种方式&#xff0c;可以完成资源的跳转&#xff1a; 第一种方式&#xff1a;请求转发 第二种方式&#xff1a;重定向 转发和重定向的区别&#xff1a; 代码上的区别&#xff1a; 请求转发 // 获取请求转发器对象 RequestDispatcher dispatcher request.…

3-1 SpringCloud快速开发入门: Ribbon 是什么

接上一章节Eureka 服务注册中心自我保护机制&#xff0c;这里讲讲Ribbon 是什么 Ribbon 是什么 通常说的负载均衡是指将一个请求均匀地分摊到不同的节点单元上执行&#xff0c;负载均和分为硬件负载均衡和软件负载均衡&#xff1a; **硬件负载均衡&#xff1a;**比如 F5、深信…

C# 实现 key-value 结构自定义缓存 CustomCache

功能需求 使用 C# 编写一个 key-value 结构进程内缓存&#xff0c;实现数据的缓存操作&#xff0c;此处所用到的知识点如下&#xff1a; 线程安全的字典 ConcurrentDictionary&#xff1b;设计模式之单例模式&#xff08;Singleton&#xff09;&#xff1b;缓存数据【主动 &a…

3.10多线程

一.常见锁策略1.悲观锁 vs乐观锁体现在处理锁冲突的态度①悲观锁:预期锁冲突的概率高所以做的工作更多,付出的成本更多,更低效②乐观锁:预期锁冲突的概率低所以做的工作少,付出的成本更低,更搞笑2.读写锁 vs 普通的互斥锁①普通的互斥锁,只有两个操作 加锁和解锁只有两个线程针…

HT32合泰单片机开发环境搭建和配置教程

HT32合泰(Holtek)单片机开发环境搭建安装教程 前言 最近在准备合泰杯的比赛&#xff0c;在看合泰官方的PPT和数据手册学习&#xff0c;顺便做个合泰单片机的开发环境搭建教程。 合泰杯比赛发放的开发板是ESK32-30501&#xff0c;用的单片机是HT32F52352。 合泰杯官网地址&a…

【C++】vector的使用及其模拟实现

这里写目录标题一、vector的介绍及使用1. vector的介绍2. 构造函数3. 遍历方式4. 容量操作及空间增长问题5. 增删查改6. vector二维数组二、vector的模拟实现1. 构造函数2. 迭代器和基本接口3. reserve和resize4. push_back和pop_back5. insert和erase5. 迭代器失效问题5. 浅拷…

Java中的 this 和 super

1 this 关键字 1.1 this 访问本类属性 this 代表对当前对象的一个引用 所谓当前对象&#xff0c;指的是调用当前类中方法或属性的那个对象this只能在方法内部使用&#xff0c;表示对“调用方法的那个对象”的引用this.属性名&#xff0c;表示本对象自己的属性 当对象的属性和…

IntelliJ IDEA 编码设置

1.场景 适用于配置idea文件编码 2.配置 对已经存在的项目设置文件编码 可以设置全局的编码 以及 项目的编码 一般没啥特殊要求 都建议设置为 UTF-8 以及 配置项目的目录的单独编码 也建议UTF-8 idea可以单独设置properties的编码 也建议改为 UTF-8&#xff0c;其中有一个重点…

HCIP --- GRE和MGRE

VPN----虚拟私有网络&#xff1a;依靠ISP或者其他网络管理机构在公有网络基础上构建的专用的安全数据通信网络&#xff0c;只不过该网络是逻辑上的而非物理的。 虚拟&#xff1a;用户不再需要拥有实际的长途数据线路&#xff0c;而是使用公共网络资源建立的属于自己的私有网络…

[论文笔记]Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

引言 我们知道Transformer很好用&#xff0c;但它设定的最长长度是512。像一篇文章超过512个token是很容易的&#xff0c;那么我们在处理这种长文本的情况下也想利用Transformer的强大表达能力需要怎么做呢&#xff1f; 本文就带来一种处理长文本的Transformer变种——Transf…

SQS (Simple Queue Service)简介

mazon Simple Queue Service (SQS)是一种完全托管的消息队列服务&#xff0c;可以让你分离和扩展微服务、分布式系统和无服务应用程序。 在讲解SQS之前&#xff0c;首先让我们了解一下什么是消息队列。 消息队列 还是举一个电商的例子&#xff0c;一个用户在电商网站下单后付…