【MySQL高级篇】第04章_逻辑架构

news2025/1/12 20:51:08

第04章_逻辑架构

1. 逻辑架构剖析

1.1 服务器处理客户端请求

首先MySQL是典型的C/S架构,即Clinet/Server 架构,服务端程序使用的mysqld。

不论客户端进程和服务器进程是采用哪种方式进行通信,最后实现的效果是:客户端进程向服务器进程发送一段文本(SQL语句),服务器进程处理后再向客户端进程发送一段文本(处理结果)

那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为 例展示:

在这里插入图片描述

下面具体展开如下:

在这里插入图片描述

1.2 Connectors

Connectors, 指的是不同语言中与SQL的交互。MySQL首先是一个网络程序,在TCP之上定义了自己的应用层协议。所以要使用MySQL,我们可以编写代码,跟MySQL Server 建立TCP连接,之后按照其定义好的协议进行交互。或者比较方便的方法是调用SDK,比如Native C API、JDBC、PHP等各语言MySQL Connecotr,或者通过ODBC。但通过SDK来访问MySQL,本质上还是在TCP连接上通过MySQL协议跟MySQL进行交互

接下来的MySQL Server结构可以分为如下三层:

1.3 第一层:连接层

系统(客户端)访问 MySQL 服务器前,做的第一件事就是建立 TCP 连接。 经过三次握手建立连接成功后, MySQL 服务器对 TCP 传输过来的账号密码做身份认证、权限获取。

  • 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行
  • 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依赖于此时读到的权限

TCP 连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。

所以连接管理的职责是负责认证、管理连接、获取权限信息。

1.4 第二层:服务层

第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化及部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。

在该层,服务器会解析查询并创建相应的内部解析树,并对其完成相应的优化:如确定查询表的顺序,是否利用索引等,最后生成相应的执行操作。

如果是SELECT语句,服务器还会查询内部的缓存。如果缓存空间足够大,这样在解决大量读操作的环境中能够很好的提升系统的性能。

  • SQL Interface: SQL接口

    • 接收用户的SQL命令,并且返回用户需要查询的结果。比如SELECT … FROM就是调用SQL Interface
    • MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定 义函数等多种SQL语言接口
  • Parser: 解析器

    • 在解析器中对 SQL 语句进行语法分析、语义分析。将SQL语句分解成数据结构,并将这个结构 传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的。如果在分解构成中遇到错 误,那么就说明这个SQL语句是不合理的。
    • 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建 语法树 ,并根据数据字 典丰富查询语法树,会 验证该客户端是否具有执行该查询的权限 。创建好语法树后,MySQL还 会对SQl查询进行语法上的优化,进行查询重写。
  • Optimizer: 查询优化器

    • SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个 执行计划 。
    • 这个执行计划表明应该 使用哪些索引 进行查询(全表检索还是使用索引检索),表之间的连 接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将 查询结果返回给用户。
    • 它使用“ 选取-投影-连接 ”策略进行查询。例如:
    SELECT id,name FROM student WHERE gender = '女';
    

    这个SELECT查询先根据WHERE语句进行 选取 ,而不是将表全部查询出来以后再进行gender过 滤。 这个SELECT查询先根据id和name进行属性 投影 ,而不是将属性全部取出以后再进行过 滤,将这两个查询条件 连接 起来生成最终查询结果。

  • Caches & Buffers: 查询缓存组件

    • MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结 果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过 程了,直接将结果反馈给客户端。
    • 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等 。 这个查询缓存可以在 不同客户端之间共享 。
    • 从MySQL 5.7.20开始,不推荐使用查询缓存,并在 MySQL 8.0中删除 。

1.5 第三层:引擎层

插件式存储引擎层( Storage Engines),真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样 我们可以根据自己的实际需要进行选取。

MySQL 8.0.25默认支持的存储引擎如下:

在这里插入图片描述

1.6 存储层

所有的数据,数据库、表的定义,表的每一行的内容,索引,都是存在文件系统 上,以文件的方式存在的,并完成与存储引擎的交互。当然有些存储引擎比如InnoDB,也支持不使用文件系统直接管理裸设备,但现代文件系统的实现使得这样做没有必要了。在文件系统之下,可以使用本地磁盘,可以使用 DAS、NAS、SAN等各种存储系统。

1.7 小结

MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下:

在这里插入图片描述

简化为三层结构:

  1. 连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
  2. SQL 层(服务层):对 SQL 语句进行查询处理;与数据库文件的存储方式无关;
  3. 存储引擎层:与数据库文件打交道,负责数据的存储和读取。

2. SQL执行流程

2.1 MySQL中的SQL执行流程

在这里插入图片描述

MySQL的查询流程:

  1. 查询缓存:Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没 有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃了这个功能。

总之,因为查询缓存往往弊大于利,查询缓存的失效非常频繁。

一般建议大家在静态表里使用查询缓存,什么叫静态表呢?就是一般我们极少更新的表。比如,一个系统配置表、字典表,这张表上的查询才适合使用查询缓存。好在MySQL也提供了这种“按需使用”的方式。你可以将 my.cnf 参数 query_cache_type 设置成 DEMAND,代表当 sql 语句中有 SQL_CACHE关键字时才缓存。比如:

# query_cache_type 有3个值。 0代表关闭查询缓存OFF,1代表开启ON,2代表(DEMAND)
query_cache_type=2

这样对于默认的SQL语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以供SQL_CACHE显示指定,像下面这个语句一样:

SELECT SQl_CACHE * FROM test WHERE ID=5;

查看当前 mysql 实例是否开启缓存机制

# MySQL5.7中:
show global variables like "%query_cache_type%";

监控查询缓存的命中率:

show status like '%Qcache%';

运行结果解析:

Qcache_free_blocks: 表示查询缓存中海油多少剩余的blocks,如果该值显示较大,则说明查询缓存中的内部碎片过多了,可能在一定的时间进行整理。

Qcache_free_memory: 查询缓存的内存大小,通过这个参数可以很清晰的知道当前系统的查询内存是否够用,DBA可以根据实际情况做出调整。

Qcache_hits: 表示有 多少次命中缓存。我们主要可以通过该值来验证我们的查询缓存的效果。数字越大,缓存效果越理想。

Qcache_inserts: 表示多少次未命中然后插入,意思是新来的SQL请求在缓存中未找到,不得不执行查询处理,执行查询处理后把结果insert到查询缓存中。这样的情况的次数越多,表示查询缓存应用到的比较少,效果也就不理想。当然系统刚启动后,查询缓存是空的,这也正常。

Qcache_lowmem_prunes: 该参数记录有多少条查询因为内存不足而被移除出查询缓存。通过这个值,用户可以适当的调整缓存大小。

Qcache_not_cached: 表示因为query_cache_type的设置而没有被缓存的查询数量。

Qcache_queries_in_cache: 当前缓存中缓存的查询数量

Qcache_total_blocks: 当前缓存的block数量。

  1. 解析器:在解析器中对 SQL 语句进行语法分析、语义分析。

在这里插入图片描述

如果没有命中查询缓存,就要开始真正执行语句了。首先,MySQL需要知道你要做什么,因此需要对SQL语句做解析。SQL语句的分析分为词法分析与语法分析。

分析器先做“ 词法分析 ”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面 的字符串分别是什么,代表什么。

MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语 句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。

接着,要做“ 语法分析 ”。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输 入的这个 SQL 语句是否 满足 MySQL 语法

select department_id,job_id, avg(salary) from employees group by department_id;

如果SQL语句正确,则会生成一个这样的语法树:

在这里插入图片描述

下图是SQL分词分析的过程步骤:

在这里插入图片描述

至此解析器的工作任务也基本圆满了。

  1. 优化器:在优化器中会确定 SQL 语句的执行路径,比如是根据 全表检索 ,还是根据 索引检索 等。

    经过解释器,MySQL就知道你要做什么了。在开始执行之前,还要先经过优化器的处理。一条查询可以有很多种执行方式,最后都返回相同的结果。优化器的作用就是找到这其中最好的执行计划

    比如:优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联 (join) 的时候,决定各个表的连接顺序,还有表达式简化、子查询转为连接、外连接转为内连接等。

    举例:如下语句是执行两个表的 join:

select * from test1 join test2 using(ID)
where test1.name='zhangwei' and test2.name='mysql高级课程';
方案1:可以先从表 test1 里面取出 name='zhangwei'的记录的 ID 值,再根据 ID 值关联到表 test2,再判
断 test2 里面 name的值是否等于 'mysql高级课程'。

方案2:可以先从表 test2 里面取出 name='mysql高级课程' 的记录的 ID 值,再根据 ID 值关联到 test1,
再判断 test1 里面 name的值是否等于 zhangwei。

这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。优化
器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。
如果你还有一些疑问,比如优化器是怎么选择索引的,有没有可能选择错等。后面讲到索引我们再谈。

在查询优化器中,可以分为 逻辑查询 优化阶段和 物理查询 优化阶段。

逻辑查询优化就是通过改变SQL语句的内容来使得SQL查询更高效,同时为物理查询优化提供更多的候选执行计划。通常采用的方式是对SQL语句进行等价变换,对查询进行重写,而查询重写的数学基础就是关系代数。对条件表达式进行等价谓词重写、条件简化,对视图进行重写,对子查询进行优化,对连接语义进行了外连接消除、嵌套连接消除等。

物理查询优化是基于关系代数进行的查询重写,而关系代数的每一步都对应着物理计算,这些物理计算往往存在多种算法,因此需要计算各种物理路径的代价,从中选择代价最小的作为执行计划。在这个阶段里,对于单表和多表连接的操作,需要高效地使用索引,提升查询效率。

  1. 执行器

截止到现在,还没有真正去读写真实的表,仅仅只是产出了一个执行计划。于是就进入了执行器阶段 。

在这里插入图片描述

在执行之前需要判断该用户是否 具备权限 。如果没有,就会返回权限错误。如果具备权限,就执行 SQL 查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。

select * from test where id=1;

比如:表 test 中,ID 字段没有索引,那么执行器的执行流程是这样的:

调用 InnoDB 引擎接口取这个表的第一行,判断 ID 值是不是1,如果不是则跳过,如果是则将这行存在结果集中;
调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。
执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。

至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。

SQL 语句在 MySQL 中的流程是: SQL语句查询缓存解析器优化器执行器

2.2 MySQL8中SQL执行原理

1) 确认profiling是否开启

了解查询语句底层执行的过程:select @profiling 或者 show variables like '%profiling' 查看是否开启计划。开启它可以让MySQL收集在SQL

执行时所使用的资源情况,命令如下:

mysql> select @@profiling;
mysql> show variables like 'profiling';

profiling=0 代表关闭,我们需要把 profiling 打开,即设置为 1:

mysql> set profiling=1;

2) 多次执行相同SQL查询

然后我们执行一个 SQL 查询(你可以执行任何一个 SQL 查询):

mysql> select * from employees;

3) 查看profiles

查看当前会话所产生的所有 profiles:

mysql> show profiles; # 显示最近的几次查询

4) 查看profile

显示执行计划,查看程序的执行步骤:

mysql> show profile;

在这里插入图片描述

当然你也可以查询指定的 Query ID,比如:

mysql> show profile for query 7;

查询 SQL 的执行时间结果和上面是一样的。

此外,还可以查询更丰富的内容:

mysql> show profile cpu,block io for query 6;

在这里插入图片描述

继续:

mysql> show profile cpu,block io for query 7;

在这里插入图片描述

1、除了查看cpu、io阻塞等参数情况,还可以查询下列参数的利用情况。

Syntax:
SHOW PROFILE [type [, type] ... ]
	[FOR QUERY n]
	[LIMIT row_count [OFFSET offset]]

type: {
	| ALL -- 显示所有参数的开销信息
	| BLOCK IO -- 显示IO的相关开销
	| CONTEXT SWITCHES -- 上下文切换相关开销
	| CPU -- 显示CPU相关开销信息
	| IPC -- 显示发送和接收相关开销信息
	| MEMORY -- 显示内存相关开销信息
	| PAGE FAULTS -- 显示页面错误相关开销信息
	| SOURCE -- 显示和Source_function,Source_file,Source_line 相关的开销信息
	| SWAPS -- 显示交换次数相关的开销信息
}

2、发现两次查询当前情况都一致,说明没有缓存。

在 8.0 版本之后,MySQL 不再支持缓存的查询。一旦数据表有更新,缓存都将清空,因此只有数据表是静态的时候,或者数据表很少发生变化时,使用缓存查询才有价值,否则如果数据表经常更新,反而增加了 SQL 的查询时间。

2.3 MySQL5.7中SQL执行原理

上述操作在MySQL5.7中测试,发现前后两次相同的sql语句,执行的查询过程仍然是相同的。不是会使用 缓存吗?这里我们需要 显式开启查询缓存模式 。在MySQL5.7中如下设置:

1) 配置文件中开启查询缓存

在 /etc/my.cnf 中新增一行:

query_cache_type=1

2) 重启mysql服务

systemctl restart mysqld

3) 开启查询执行计划

由于重启过服务,需要重新执行如下指令,开启profiling。

mysql> set profiling=1;

4) 执行语句两次:

mysql> select * from locations;

5) 查看profiles

在这里插入图片描述

6) 查看profile

显示执行计划,查看程序的执行步骤:

mysql> show profile for query 1;

在这里插入图片描述

mysql> show profile for query 2;

在这里插入图片描述

结论不言而喻。执行编号2时,比执行编号1时少了很多信息,从截图中可以看出查询语句直接从缓存中 获取数据。

2.4 SQL语法顺序

随着Mysql版本的更新换代,其优化器也在不断的升级,优化器会分析不同执行顺序产生的性能消耗不同 而动态调整执行顺序。

3. 数据库缓冲池(buffer pool)

InnoDB 存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘 I/O 需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS 会申请占用内存来作为数据缓冲池 ,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的 Buffer Pool 之后才可以访问。

这样做的好处是可以让磁盘活动最小化,从而 减少与磁盘直接进行 I/O 的时间 。要知道,这种策略对提升 SQL 语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。

3.1 缓冲池 vs 查询缓存

缓冲池和查询缓存是一个东西吗?不是。

1) 缓冲池(Buffer Pool)

首先我们需要了解在 InnoDB 存储引擎中,缓冲池都包括了哪些。

在 InnoDB 存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,如下图所示:

在这里插入图片描述

从图中,你能看到 InnoDB 缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应 Hash 和数据字典信息等。

缓存池的重要性:

缓存原则:

位置 * 频次 ”这个原则,可以帮我们对 I/O 访问效率进行优化。

首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。

其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有 200G,但是内存只有 16G,缓冲池大小只有 1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会优先对使用频次高的热数据进行加载

缓冲池的预读特性:

缓冲池的作用就是提升 I/O 效率,而我们进行读取数据的时候存在一个“局部性原理”,也就是说我们使用了一些数据,大概率还会使用它周围的一些数据,因此采用“预读”的机制提前加载,可以减少未来可能的磁盘 I/O 操作。

2) 查询缓存

那么什么是查询缓存呢?

查询缓存是提前把 查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在 MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表 发生变化,查询缓存就会失效,因此命中率低。

3.2 缓冲池如何读取数据

缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面 是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。

缓存在数据库中的结构和作用如下图所示:

在这里插入图片描述

如果我们执行 SQL 语句的时候更新了缓存池中的数据,那么这些数据会马上同步到磁盘上吗?

实际上,当我们对数据库中的记录进行修改的时候,首先会修改缓冲池中页里面的记录信息,然后数据库会以一定的频率刷新到磁盘中。注意并不是每次发生更新操作,都会立即进行磁盘回写。缓冲池会采用一种叫做 checkpoint 的机制 将数据回写到磁盘上,这样做的好处就是提升了数据库的整体性能。

比如,当缓冲池不够用时,需要释放掉一些不常用的页,此时就可以强行采用checkpoint的方式,将不常用的脏页回写到磁盘上,然后再从缓存池中将这些页释放掉。这里的脏页 (dirty page) 指的是缓冲池中被修改过的页,与磁盘上的数据页不一致。

3.3 查看/设置缓冲池的大小

如果你使用的是 MySQL MyISAM 存储引擎,它只缓存索引,不缓存数据,对应的键缓存参数为key_buffer_size,你可以用它进行查看。

如果你使用的是 InnoDB 存储引擎,可以通过查看 innodb_buffer_pool_size 变量来查看缓冲池的大小。命令如下:

show variables like 'innodb_buffer_pool_size';

在这里插入图片描述

你能看到此时 InnoDB 的缓冲池大小只有 134217728/1024/1024=128MB。我们可以修改缓冲池大小,比如改为256MB,方法如下:

set global innodb_buffer_pool_size = 268435456;

或者:

[server]
innodb_buffer_pool_size = 268435456

3.4 多个Buffer Pool实例

[server]
innodb_buffer_pool_instances = 2

这样就表明我们要创建2个 Buffer Pool 实例。

我们看下如何查看缓冲池的个数,使用命令:

show variables like 'innodb_buffer_pool_instances';

那每个 Buffer Pool 实例实际占多少内存空间呢?其实使用这个公式算出来的:

innodb_buffer_pool_size/innodb_buffer_pool_instances

也就是总共的大小除以实例的个数,结果就是每个 Buffer Pool 实例占用的大小。

不过也不是说 Buffer Pool 实例创建的越多越好,分别管理各个 Buffer Pool 也是需要性能开销的,InnDB规定:当innodb_buffer_pool_size的值小于1G的时候设置多个实例是无效的,InnoDB会默认把innodb_buffer_pool_instances的值修改为1。而我们鼓励在 Buffer Pool 大于等于 1G 的时候设置多个 Buffer Pool 实例。

3.5 引申问题

Buffer Pool是MySQL内存结构中十分核心的一个组成,你可以先把它想象成一个黑盒子。

黑盒下的更新数据流程

当我们查询数据的时候,会先去 Buffer Pool 中查询。如果 Buffer Pool 中不存在,存储引擎会先将数据从磁盘加载到 Buffer Pool 中,然后将数据返回给客户端;同理,当我们更新某个数据的时候,如果这个数据不存在于 Buffer Pool,同样会先数据加载进来,然后修改内存的数据。被修改的数据会在之后统一刷入磁盘。

在这里插入图片描述

我更新到一半突然发生错误了,想要回滚到更新之前的版本,该怎么办?连数据持久化的保证、事务回滚都做不到还谈什么崩溃恢复?

答案:Redo Log & Undo Log

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/400497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线程池的原理

1. 为什么要用线程池降低资源消耗。通过重复利用已创建的线程降低线程创建、销毁线程造成的消耗。提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统…

Javaweb之会话跟踪技术

1.会话跟踪技术的概述 会话跟踪技术就是处理一次会话中多次请求间数据共享问题 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应。 从浏览器发出请求到服务…

vue 行内样式 px 单位 转换为 vw

vue2 安装 插件 npm i style-vw-loader --save vue.config.js 文件配置 module.exports {chainWebpack: (config) > {config.module.rule(vue).test(/\.vue$/).use(style-vw-loader).loader(style-vw-loader).options({unitToConvert: "px",//需要转换的单位vi…

讲透前端工程开发工具发展与使用

前端⼯程化的发展及⼯具详解 什么是⼯程化?什么是前端⼯程化? 随着发展的逐步发展,作为⼯程师除了需要关注需要写的⻚⾯,样式和逻辑之外,还需要⾯对⽇益复杂的系统性问题,⽐如模块化⽂件的组织、ES6 JS ⽂…

为了满足国内市场快速发展的业务需求,理想汽车选择亚马逊云科技

理想汽车是一家用户驱动的汽车科技企业,坚持核心技术全栈自研,理想ONE是其首个单车突破20万辆的智能电动车产品。借助亚马逊云科技领先技术和多项托管服务,理想汽车迅速构建起安全稳定、技术架构先进的车联网云计算处理平台,服务于…

R语言基础(二):常用函数

接前文: R语言基础(一):注释、变量 3.常用函数 函数就是一些已经编写好的功能,我们拿过来直接使用就可以了。 3.1 查看变量ls() 也许你清空了控制台,看不到之前的变量。但是它一直存在于系统中。 我们可以使用ls()函数查看已经定…

事件响应必备:DNS攻击与防御矩阵

攻击者采用了哪些DNS攻击技术,哪些组织可以帮助事件响应团队检测、缓解和预防这些技术?FIRST近日发布的DNS攻击与防御矩阵提供了答案。 DNS作为互联网基础架构的一项核心服务,安全问题严峻,各种攻击层出不穷。F5发布的数据显示&a…

项目管理手册

1 概述 1.1 项目管理体系 1.1.1 体系基础 项目管理体系是建立在公司 ISO 9000 质量管理体系基础上,结合 PMI 项目管理框架与 CMMI 能力成熟度模型,针对项目实施状态,对一些重点环节进行细化,加强重点环节的监控,明确…

Python导入模块的3种方式(超级详细)

很多初学者经常遇到这样的问题,即自定义 Python 模板后,在其它文件中用 import(或 from...import) 语句引入该文件时,Python 解释器同时如下错误: ModuleNotFoundError: No module named 模块名 意思是 Pyt…

VS2022安装EasyX 及 EasyX图形库安装和使用(附C++各图形编程项目示例源码)

文章目录一、EasyX的安装二、C_EasyX 项目1. 樱花2. 雪花3. 小熊4. 跳动爱心5. 橘子钟表6. 红玫瑰7. 奥特曼三、更多项目资源EasyX提取链接 网盘链接:https://pan.baidu.com/s/1gPtRVZub_008jwcK11Bb-g?pwd9ol9 提取码:9ol9 什么是EasyX? E…

GTC08L可替代启攀微八通道CP2528、CP2682

由工采网代理提供的八通道电容式触摸传感芯片—GTC08L可完美替代启攀微CP2528、CP2682、CP2688等多款八按键触摸芯片。 芯片介绍: GTC08L采用SOP-16L(9.90x3.90x1.40,e1.27) 封装;电源电压范围:2.7V~5.5V具有各种智能传感功能&…

使用JProfiler分析java oom dump文件

1、安装JProfiler(本文使用JProfiler11) 链接:https://pan.baidu.com/s/1VBHLIo8hIVGeeLjaBVjcIg 提取码:q5wl 在JProfiler的堆遍历器(Heap Walker)中,你可以对堆的状况进行快照并且可以通过选择步骤下寻找感兴趣的对…

一阶LADRC笔记代码实现

这两天看了一下LADRC的。学习深度不够,从理论和原理,没法评论什么。从个人感受上,它会从另一种角度去解释一些的控制的东西。从工程使用上,还是很有参考价值的,参数意义比较明确,整定参数比较容易。 参考&…

Javaweb MVC模式和三层架构

MVC 模式和三层架构是一些理论的知识,将来我们使用了它们进行代码开发会让我们代码维护性和扩展性更好。 7.1 MVC模式 MVC 是一种分层开发的模式,其中: M:Model,业务模型,处理业务 V:View&am…

沃隆食品冲刺上市:业绩整体呈下滑态势,红杉资本提前退出投资

近日,“每日坚果”的缔造者——青岛沃隆食品股份有限公司(下称“沃隆食品”)平移提交招股书,准备在上海证券交易所主板上市。本次冲刺上市,沃隆食品计划募集7.00亿元,中信证券为其保荐机构。 沃隆食品在招…

面试必看:谈谈你所了解的JVM调优,JVM性能调优总结

文章目录从面试角度来谈谈你了解的JVM调优GC调优的步骤1.确定目标:2.优化参数3.验收优化结果GC优化案例一、Major GC和Minor GC频繁优化Minor GC频繁问题:1.可以适当增大新生代的内存二、请求高峰期发生GC,导致服务可用性降低优化标记停顿时间…

第55章 头像图片的前端渲染显示

1 WebApi.Controllers.CustomerController.GetCustomerByToken /// <param name"token">1个指定的令牌字符串。</param> /// <summary> /// 【通过令牌获取用户-无需权限】 /// </summary> /// <remarks> /// 摘要&#xff1a; /// …

【Python】装饰器

一、装饰器的作用 装饰器能够为已经存在的对象添加额外的功能。 二、什么是装饰器 装饰器本质是一个python函数&#xff0c;它可以让其他函数在不需要做任何代码变动的前提下增加额外功能&#xff0c;装饰器的返回值也是一个函数对象。 三、装饰器的应用场景 插入日志、性能…

在云服务器安装tomcat和mysql

将 linux 系统安装包解压到指定目录进入 bin 目录执行./startup.sh 命令启动服务器执行./shutdown.sh 关闭服务器在浏览器中访问虚拟机中的 tomcat ip端口具体操作入下解压tomcat压缩包解压&#xff0c;输入tom按table键自动补全tar -zxvf 启动tomcat进入bin目录在linux启动to…

debian11安装Nvidia驱动及Docker运行

文章目录前言硬件及软件环境驱动下载驱动安装禁用xserver禁用nouveau安装依赖设置可执行并运行检查安装结果Docker配置Docker安装nvidia-container-runtime安装[^4]命令脚本内容执行脚本安装 nvidia-container-runtime检测Docker gpu 验证卸载指令总结异常处理参考链接前言 博…