Pytorch中utils.data 与torchvision简介
- 1 数据处理工具概述
- 2 utils.data简介
- 3 torchvision简介
- 3.1 transforms
- 3.2 ImageFolder
1 数据处理工具概述
Pytorch涉及数据处理(数据装载、数据预处理、数据增强等)主要工具包及相互关系如下图所示,主要使用torch.utils.data 与 torchvision:
torch.utils.data工具包,它包括以下三个类:
(1)Dataset:是一个抽象类,其它数据集需要继承这个类,并且覆写其中的两个方法(getitem、len)。
(2)DataLoader:定义一个新的迭代器,实现批量(batch)读取,打乱数据(shuffle)并提供并行加速等功能。
(3)random_split:把数据集随机拆分为给定长度的非重叠新数据集。
(4)*sampler:多种采样函数。
可视化处理工具torchvision:Pytorch的一个视觉处理工具包,独立于Pytorch,需要另外安装,使用pip或conda安装即可,包含四个类:
(1)datasets:提供常用的数据集加载,设计上都是继承torch.utils.data.Dataset,主要包括MMIST、CIFAR10/100、ImageNet、COCO等。
(2)models:提供深度学习中各种经典的网络结构以及训练好的模型(如果选择pretrained=True),包括AlexNet, VGG系列、ResNet系列、Inception系列等。
(3)transforms:常用的数据预处理操作,主要包括对Tensor及PIL Image对象的操作。
(4)utils:含两个函数,一个是make_grid,它能将多张图片拼接在一个网格中;另一个是save_img,它能将Tensor保存成图片。
2 utils.data简介
utils.data包括Dataset和 DataLoader 。
-
torch.utils.data.Dataset:为抽象类。自定义数据集需要继承这个类,并实现两个函数。一个是__len__,另一个是__getitem__,前者提供数据的大小(size),后者通过给定索引获取数据和标签。
-
由于__getitem__一次只能获取一个数据,所以通过torch.utils.data.DataLoader来定义一个新的迭代器,实现batch读取。
下面通过举例,来比较Dataset 和DataLoader
- 1,导入相关模块
import torch
from torch.utils import data
import numpy as np
- 2,定义获取数据集的类,该类继承基类Dataset,自定义一个数据集及对应标签。
class TestDataset(data.Dataset):#继承Dataset
def __init__(self):
self.Data=np.asarray([[1,2],[3,4],[2,1],[3,4],[4,5]])#一些由2维向量表示的数据集
self.Label=np.asarray([0,1,0,1,2])#这是数据集对应的标签
def __getitem__(self, index):
#把numpy转换为Tensor
txt=torch.from_numpy(self.Data[index])
label=torch.tensor(self.Label[index])
return txt,label
def __len__(self):
return len(self.Data)
- 3,获取数据集中数据
Test=TestDataset()
print(Test[2]) #相当于调用__getitem__(2)
print(Test.__len__())
#輸出:
#(tensor([2, 1]), tensor(0))
#5
上面使用Dataset的方式,每次只返回一个样本。如果希望批处理,同时还要shuffle和并行加速等操作,可选择DataLoader。
data.DataLoader(
dataset,
batch_size=1,
shuffle=False,
sampler=None,
batch_sampler=None,
num_workers=0,
collate_fn=,
pin_memory=False,
drop_last=False,
timeout=0,
worker_init_fn=None,
)
主要参数说明:
dataset: 加载的数据集;
batch_size: 批大小;
shuffle:是否将数据打乱;
sampler:样本抽样
num_workers:使用多进程加载的进程数,0代表不使用多进程;
collate_fn:如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可;
pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些;
drop_last:dataset 中的数据个数可能不是 batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃。
test_loader = data.DataLoader(Test,batch_size=2,shuffle=False,num_workers=2)
for i,traindata in enumerate(test_loader):
print('i:',i)
Data,Label=traindata
print('data:',Data)
print('Label:',Label)
从这个结果可以看出,这是批量读取。我们可以像使用迭代器一样使用它,如对它进行循环操作。不过它不是迭代器,我们可以通过iter命令转换为迭代器。
一般用data.Dataset处理同一个目录下的数据。如果数据在不同目录下,不同目录代表不同类别(这种情况比较普遍),使用data.Dataset来处理就不很方便。
不过,可以使用Pytorch另一种可视化数据处理工具(即torchvision)就非常方便,不但可以自动获取标签,还提供很多数据预处理、数据增强等转换函数。
3 torchvision简介
torchvision有4个功能模块,
- model:
- datasets:
- transforms:如何使用transforms对源数据进行预处理、增强等
- utils:
3.1 transforms
transforms提供了对PIL Image对象和Tensor对象的常用操作
(1)对PIL Image的常见操作如下:
Scale/Resize: 调整尺寸,长宽比保持不变;
CenterCrop、RandomCrop、RandomSizedCrop:裁剪图片,CenterCrop和RandomCrop在crop时是固定size,RandomResizedCrop则是random size的crop;
Pad: 填充;
ToTensor: 把一个取值范围是[0,255]的PIL.Image 转换成 Tensor。形状为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W],取值范围是[0,1.0]的torch.FloatTensor。
RandomHorizontalFlip:图像随机水平翻转,翻转概率为0.5;
RandomVerticalFlip: 图像随机垂直翻转;
ColorJitter: 修改亮度、对比度和饱和度。
(2)对Tensor的常见操作如下:
Normalize: 标准化,即减均值,除以标准差;
ToPILImage:将Tensor转为PIL Image。
如果要对数据集进行多个操作,可通过Compose将这些操作像管道一样拼接起来,类似于nn.Sequential。以下为示例代码
transforms.Compose([
#将给定的 PIL.Image 进行中心切割,得到给定的 size,
#size 可以是 tuple,(target_height, target_width)。
#size 也可以是一个 Integer,在这种情况下,切出来的图片形状是正方形。
transforms.CenterCrop(10),
#切割中心点的位置随机选取
transforms.RandomCrop(20, padding=0),
#把一个取值范围是 [0, 255] 的 PIL.Image 或者 shape 为 (H, W, C) 的 numpy.ndarray,
#转换为形状为 (C, H, W),取值范围是 [0, 1] 的 torch.FloatTensor
transforms.ToTensor(),
#规范化到[-1,1]
transforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))
])
3.2 ImageFolder
当文件依据标签处于不同文件下时,如:
可以利用 torchvision.datasets.ImageFolder 来直接构造出 dataset,代码如下:
loader = datasets.ImageFolder(path)
loader = data.DataLoader(dataset)
ImageFolder 会将目录中的文件夹名自动转化成序列,那么DataLoader载入时,标签自动就是整数序列了。
下面我们利用ImageFolder读取不同目录下图片数据,然后使用transorms进行图像预处理,预处理有多个,我们用compose把这些操作拼接在一起。然后使用DataLoader加载。
对处理后的数据用torchvision.utils中的save_image保存为一个png格式文件,然后用Image.open打开该png文件,详细代码如下:
from torchvision import transforms, utils
from torchvision import datasets
import torch
import matplotlib.pyplot as plt
%matplotlib inline
my_trans=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
train_data = datasets.ImageFolder('./data/torchvision_data', transform=my_trans)
train_loader = data.DataLoader(train_data,batch_size=8,shuffle=True,)
for i_batch, img in enumerate(train_loader):
if i_batch == 0:
print(img[1])
fig = plt.figure()
grid = utils.make_grid(img[0])
plt.imshow(grid.numpy().transpose((1, 2, 0)))
plt.show()
utils.save_image(grid,'test01.png')
break
其他功能模块待更新!
参考:python深度学习-基于pytorch