详解JAVA类加载器

news2024/11/11 16:17:39

目录

1.概述

2.双亲委派

3.ServiceClassLoader

4.URLClassLoader

5.加载冲突


1.概述

概念:

类加载器(Class Loader)是Java虚拟机(JVM)的一个重要组件,负责加载Java类到内存中并使其可以被JVM执行。类加载器是Java程序的核心机制之一。

分类:

类加载器一共有三种:

  • 启动类加载器,加载系统类rt.jar。
  • 扩展类加载器,加载JDK内部,rt.jar之外,由于JDK版本迭代而新出现的扩展类。
  • 应用类加载器加载J用户所配置的classpath下的类。

三种类加载器之间从上到下有父子关系,上层是下层的父加载器。

2.双亲委派

在类加载中可能会遇见这样一种情况:

JDK里自带一个java.lang.String,有一个恶意的攻击类也将类的全类名命名为java.lang.String。如果我们想使用String类型的时候,类加载器将这个伪装成JDK的String类的恶意类加载执行,系统就将遭受到破坏。

很明显,为了安全起见JDK需要一种合理的加载方式来控制类的加载,这种合理的加载方式就是——双亲委派机制。

双亲委派机制总结起来就是:

先找父级加载器要,要是父级加载器没有,再由自己加载。

因为启动类加载器、扩展类加载器工作在应用的启动阶段,加载的也是JDK内核相关的jar,与应用没有太大关系,与应用相关的只有应用程序加载类,而应用程序的父级最多也就是扩展类加载器、启动类加载器,也就是最多找两个双亲拿,所以称为双亲委派机制。

整个类加载的详细流程为:

我们来看看任意一个ClassLoader的loadClass源码,整个源码中双亲委派的体现很直接:

类加载器在需要加载一个类(class)的时候会先判断类是否被自己加载过,

如果没有,调用其成员变量classloader parent委托其父载器帮忙加载,

父加载器再重复以上过程,如果递归到最顶级的启动类加载器,发现都加载不了,

当前启动器会自行加载。

3.ServiceClassLoader

SPI机制:

SPI(Service Provider Interface),是在JDK1.6中提出的一种基于接口的服务发现机制,它允许第三方服务提供者扩展框架的功能。在SPI机制中,框架定义一组接口,并规定这些接口的实现类必须以一定的命名规则放在特定的路径下,然后通过Java自带的SPI机制,动态地加载和实例化这些实现类。

基于SPI机制可以实现这样的生态结构,由官方制定一些标准,厂商去给出实现,也就是官方给出接口,由各大厂商去实现接口,如JAVA EE规范中的JDBC规范等等,支撑SPI实现的核心是一个类加载器——ServiceClassLoader。

ServiceClassLoader是一种用于加载和实例化服务提供者的工具类。服务提供者是指实现了特定接口或抽象类的类,而服务加载器则负责在运行时动态地查找和加载这些实现类。

  • 定义服务接口:定义一个Java接口或抽象类,用于描述服务提供者必须实现的行为。

  • 实现服务提供者:定义一个或多个服务提供者,实现服务接口或抽象类。

  • 配置服务提供者:在META-INF/services目录下创建一个以服务接口或抽象类名为文件名的文件,并在文件中列出所有实现服务接口或抽象类的类名。

  • 加载服务提供者:使用Service Loader类动态加载和实例化服务提供者。

代码示例:

接口:

package com.eryi;

public interface HelloService {
    void sayHello();
}

实现类:

package com.eryi;

public class ChineseHelloService implements HelloService{
    @Override
    public void sayHello() {
        System.out.println("你好!");
    }
}
package com.eryi;

public class EnglishHelloService implements HelloService{
    @Override
    public void sayHello() {
        System.out.println("Hello!");
    }
}

发布服务:

在META-INF/services目录下创建一个名为"com.eryi.HelloService"的文件,文件内容如下:

com.eryi.EnglishHelloService
com.eryi.ChineseHelloService

服务发现:

package com.eryi;

import java.util.ServiceLoader;

public class test {
    public static void main(String[] args) {
        ServiceLoader<HelloService> loader = ServiceLoader.load(HelloService.class);
        for (HelloService service : loader) {
            service.sayHello();
        }
    }
}

运行结果:

4.URLClassLoader

启动类加载器、扩展类加载器、应用类加载器均是在程序工作之前完成对各个路径下所有jar包的加载的,这些路径里的jar包后续如果有什么变化,这三个类加载器是无法进行加载从而动态进行更新的。URLClassLoader就是为了实现这种动态加载而出现的。

URLClassLoader支持三种路径:

  • 目录

  • jar包

  • 网络

代码示例:

public class test {
    public static void main(String[] args) throws Exception {
        // 创建一个URLClassLoader,指定加载路径为当前目录
        URLClassLoader classLoader = new URLClassLoader(new URL[] { new URL("file:./") });

        // 动态加载HelloWorld类
        Class<?> helloWorldClass = classLoader.loadClass("HelloWorld");

        // 创建HelloWorld对象
        Object helloWorld = helloWorldClass.newInstance();

        // 调用HelloWorld对象的sayHello方法
        helloWorldClass.getMethod("sayHello").invoke(helloWorld);
    }
}

class HelloWorld {
    public void sayHello() {
        System.out.println("Hello, world!");
    }
}

由于URLClassLoader具有动态加载的特性,所以很适合拿来做热部署。

5.加载冲突

同一个类被不同加载器加载,加载结果视为两个不同类。

所以在加载之前需要判断是否被加载,如果未加载,则遵循双亲委托模型,从而避免加载冲突。

代码示例:

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;

public class Main {
    public static void main(String[] args) throws Exception {
        // 创建两个不同的URLClassLoader,分别加载同一个类
        URL[] classpath = { new File("classes/").toURI().toURL() };
        URLClassLoader classLoader1 = new URLClassLoader(classpath);
        URLClassLoader classLoader2 = new URLClassLoader(classpath);

        // 使用classLoader1加载HelloWorld类
        Class<?> helloWorldClass1 = classLoader1.loadClass("HelloWorld");

        // 使用classLoader2加载HelloWorld类
        Class<?> helloWorldClass2 = classLoader2.loadClass("HelloWorld");

        // 输出两个类是否相同
        System.out.println(helloWorldClass1 == helloWorldClass2); // false
    }
}

class HelloWorld {
    public void sayHello() {
        System.out.println("Hello, world!");
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/393045.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

抢先看!界面控件DevExtreme 2023产品路线图曝光

DevExtreme拥有高性能的HTML5 / JavaScript小部件集合&#xff0c;使您可以利用现代Web开发堆栈&#xff08;包括React&#xff0c;Angular&#xff0c;ASP.NET Core&#xff0c;jQuery&#xff0c;Knockout等&#xff09;构建交互式的Web应用程序&#xff0c;该套件附带功能齐…

【C++】优先级队列 priority_queue,仿函数和函数对象,反向迭代器

目录 1.介绍和实现 2.仿函数和函数对象 3.oj 4.反向迭代器 1.介绍和实现 他也在<queue>的头文件里 但是他的底层是堆&#xff0c;并不满足先入先出&#xff08;不要一看到queue就先入先出&#xff09; 他也是一个容器适配器&#xff0c;用vector适配的&#xff0c;为…

利用Qemu工具仿真ARM64平台

Windows系统利用Qemu仿真ARM64平台0 写在最前1 Windows安装Qemu1.1 下载Qemu1.2 安装Qemu1.3 添加环境变量1.4测试安装是否成功2. Qemu安装Ubuntu-Server-Arm-642.1 安装前的准备2.2 安装Ubuntu server arm 64位镜像3 Windows配置Qemu网络和传输文件3.1 参考内容3.2 Windows安装…

数据湖架构Hudi(五)Hudi集成Flink案例详解

五、Hudi集成Flink案例详解 5.1 hudi集成flink flink的下载地址&#xff1a; https://archive.apache.org/dist/flink/ HudiSupported Flink version0.12.x1.15.x、1.14.x、1.13.x0.11.x1.14.x、1.13.x0.10.x1.13.x0.9.01.12.2 将上述编译好的安装包拷贝到flink下的jars目录…

Python(青铜时代)——字符串

字符串的定义与操作 字符串就是 一串字符 &#xff0c;是编程语言中表示文本的数据类型 在Python中使用一对双引号 "" 或者一对单引号来定义. 使用索引获取一个字符串中 指定位置的字符&#xff0c;索引计数从0开始 可以用 for/while 循环遍历字符串中的每一个字符…

NGINX学习笔记(一):一篇了解NGINX的基本概念

NGINX是什么&#xff1f; NGINX是一款由俄罗斯人伊戈尔赛索耶夫使用C语言开发的、支持热部署的、轻量级的WEB服务器/反向代理服务器/电子邮件代理服务器&#xff0c;因为占用内存较少&#xff0c;启动极快&#xff0c;高并发能力强&#xff0c;所以在互联网项目中广泛应用。可…

CRM系统的四种数据分析法

在数字化时代&#xff0c;数据就是一切。因此&#xff0c;通过数据来支撑企业决策&#xff0c;才能确保制定的决策在更大程度上保持准确。因此&#xff0c;CRM客户管理系统的数据分析能力不容忽略。CRM获取的客户信息&#xff0c;就是很好的数据支撑样本&#xff0c;让企业从数…

CANfd 一次采样点和二次采样点

CANfd 一次采样点和二次采样点 采样点的定义 采样点是CAN控制器读取总线电平&#xff0c;并解释各个比特的逻辑值的时间点。 首先我们需要了解Tq的概念&#xff0c;Tq是can控制器的最下时间周期称作时间份额&#xff08;Time quantum&#xff0c;简称Tq&#xff09;,它是通过芯…

2023年3月全国DAMA-CDGA/CDGP数据治理认证招生简章

弘博创新是DAMA中国授权的数据治理人才培养基地&#xff0c;贴合市场需求定制教学体系&#xff0c;采用行业资深名师授课&#xff0c;理论与实践案例相结合&#xff0c;快速全面提升个人/企业数据治理专业知识与实践经验&#xff0c;通过考试还能获得数据专业领域证书。 DAMA认…

嵌入式学习笔记——认识STM32的 GPIO口

寄存器开发STM32GPIO口前言认识GPIOGPIO是什么GPIO有什么用GPIO怎么用STM32上GPIO的命名以及数量GPIO口的框图&#xff08;重点&#xff09;输入框图解析三种输入模式GPIO输入时内部器件及其作用1.保护二极管2.上下拉电阻&#xff08;可配置&#xff09;3.施密特触发器4.输入数…

Spark 存储系统

Spark 存储系统MemoryStoreDiskStoreSpark 存储系统架构&#xff1a; Spark 存储系统维护的数据 : Shuffle 中间文件 &#xff1a;Shuffle Map 输出数据 &#xff0c; 消耗节点磁盘广播变量 &#xff1a;在 Executors 内保存所有数据 &#xff0c;消耗节点的内存RDD Cache : 将…

大数据技术之Hive(五)拉链表的设计与实现

一、什么是拉链表针对订单表、订单商品表&#xff0c;流水表&#xff0c;这些表中的数据是比较多的&#xff0c;如果使用全量的方式&#xff0c;会造成大量的数据冗余&#xff0c;浪费磁盘空间。所以这种表&#xff0c;一般使用增量的方式&#xff0c;每日采集新增的数据。在这…

DevOps平台之GitLab 账户个性化设置【二】

1、简介 上一篇文章安装完GITLAB服务之后&#xff0c;我们可以很方便地从浏览器登录上去进行仓库项目管理。 但是初始化的界面默认设备并不是能很好地使用&#xff0c;比如语言&#xff0c;皮肤&#xff0c;个人信息不完善等等。 所以本文就为了完善这些。 上一篇&#xff1a;…

Linux 配置本地yum源

挂载光盘 进入包 配置路径&#xff0c;查看在线yum源 移动在线yum源到/home/目录下 进入vi,任意取名以.repo结尾即可 按住i进行编辑&#xff0c;输入以下内容 注意gpgcheck1是检验&#xff0c;配置本地yum源不需要检验 写入上图内容按住&#xff1a;输入wq&#xff0c;点击回车…

LeetCode - 1653 使字符串平衡的最少删除次数

目录 题目来源 题目描述 示例 提示 题目解析 算法源码 题目来源 1653. 使字符串平衡的最少删除次数 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给你一个字符串 s &#xff0c;它仅包含字符 a 和 b​​​​ 。 你可以删除 s 中任意数目的字符&#xff0c;使得 …

广州银行冲刺A股上市:不良贷款规模突破100亿元,不良率飙升

又一家城商行平移申报IPO。近日&#xff0c;广州银行股份有限公司&#xff08;下称“广州银行”&#xff09;递交招股书&#xff0c;准备在深圳证券交易所主板上市。本次冲刺上市&#xff0c;广州银行计划募资约94.79亿元&#xff0c;国泰君安证券为其保荐机构。 截至目前&…

省选模拟测试23 T1直径

题目大意 给你一个数kkk&#xff0c;请你构造一棵节点数量小于等于5000的直径数量为kkk的树。 我们定义这棵树的直径为&#xff0c;所有满足1≤i<j≤n1\leq i<j\leq n1≤i<j≤n的(i,j)(i,j)(i,j)中&#xff0c;dis(i,j)dis(i,j)dis(i,j)最大的。如果有多个这样的(i,…

buu RSA what 1

题目描述&#xff1a; 题目四个文件&#xff0c;分别如下&#xff1a; rsa.py from Crypto.Util.number import bytes_to_long, getPrime from random import randint from gmpy2 import powmodp getPrime(2048) q getPrime(2048) N p*q Phi (p-1)*(q-1) def get_enc_key…

珠海先达盈致数据智能监控器+SaaS平台 轻松实现注塑生产管控

数据智能监控器 兼容市面上99%的注塑设备 直接读取设备生产数据与状态&#xff0c;如&#xff1a;计划产出、实际产出、累计产出、停机、节拍、线利用率、直通率、停产时间、工单状态、OEE、注胶时间…… 产品功能价值 ◎ OEE不达标报警&#xff0c;一手掌握生产效能 ◎ 首…

论文精读:Ansor: Generating High-Performance Tensor Programs for Deep Learning

文章目录1. Abstract2. Introduction3. Background4. Design Overview5. Program Sampling5.1 Sketch Generation5.2 Random Annotation6. Performance Fine-tuning6.1 Evolutionary Search6.2 Learned Cost Model7. Task Scheduler7.1 Problem Formulation7.2 Optimizing with…