OpenGL环境配置

news2024/11/15 23:34:55

方法一:

1.下载GLFW

点击GLFW跳转

2.下载后解压

3.下载glad,解压后

4.用vs2019新建Cmake项目

5.在新建的Cmake项目下建立depend文件夹

在depend里放置我们下载解压的glad和glfw-3.3.8.bin.WIN64

6.项目中可以看到我们加进来的文件

7.编写我们项目的CMakeLists.txt,把我们的头文件和lib库加进来

8.运行程序

cmakelist中已经把glad.h路径定到了/depend/glad/include/,所以我们下面的头文件直接从include下的glad查询就好了,即#include<glad/glad.h>;同理glfw3.h的路径已经定到了/depend/glfw-3.3.8.bin.WIN64/include/,所以我们下面的头文件直接从include下的GLFW开始就好了,即#include<GLFW/glfw3.h>

方法二:

  1. 用vs2019新建控制台应用

  1. 在项目下新建文件夹depend

depend中包含include、lib、src

include内容来自方法一中glad和glfw-3.3.8.bin.WIN64中include下

lib内容来自方法一中glfw-3.3.8.bin.WIN64中lib-vc2019下

src内容来自方法一中glad下

  1. 右键项目点击属性设置VC++目录下的“包含目录”和“库目录”

然后在“链接器”下的“输入”设置“附加依赖项”,加入glfw3.lib和opengl32.lib

  1. 右键头文件,将/depend/src/glad.c加入头文件中

  1. 编译运行

测试代码:

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 aPos;\n"
"void main()\n"
"{\n"
"   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
"}\0";
const char* fragmentShaderSource = "#version 330 core\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
"   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
"}\n\0";

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }


    // build and compile our shader program
    // ------------------------------------
    // vertex shader
    unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    // check for shader compile errors
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // fragment shader
    unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    // check for shader compile errors
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // link shaders
    unsigned int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    // check for linking errors
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
         0.5f,  0.5f, 0.0f,  // top right
         0.5f, -0.5f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  // bottom left
        -0.5f,  0.5f, 0.0f   // top left 
    };
    unsigned int indices[] = {  // note that we start from 0!
        0, 1, 3,  // first Triangle
        1, 2, 3   // second Triangle
    };
    unsigned int VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);
    // bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
    glBindBuffer(GL_ARRAY_BUFFER, 0);

    // remember: do NOT unbind the EBO while a VAO is active as the bound element buffer object IS stored in the VAO; keep the EBO bound.
    //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

    // You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
    // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
    glBindVertexArray(0);


    // uncomment this call to draw in wireframe polygons.
    //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // draw our first triangle
        glUseProgram(shaderProgram);
        glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to bind it every time, but we'll do so to keep things a bit more organized
        //glDrawArrays(GL_TRIANGLES, 0, 6);
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
        // glBindVertexArray(0); // no need to unbind it every time 

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);
    glDeleteProgram(shaderProgram);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/389902.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Condition 源码解读

一、Condition 在并发情况下进行线程间的协调&#xff0c;如果是使用的 synchronized 锁&#xff0c;我们可以使用 wait/notify 进行唤醒&#xff0c;如果是使用的 Lock 锁的方式&#xff0c;则可以使用 Condition 进行针对性的阻塞和唤醒&#xff0c;相较于 wait/notify 使用…

路径规划-人工势场法

一.基本思想 目标点对机器人产生吸引力&#xff0c;障碍物对机器人产生排斥力&#xff1b; 所有力的合成构成机器人的控制律 二. 主要步骤 1.构建人工势场 目标点&#xff1a;吸引势场 障碍物&#xff1a;排斥势场 2.根据人工势场计算力 对势场求偏导 3.计算合力 计…

bpftrace 笔记

bpftrace -e BEFIN {printf("hello world!\n");}获取调用 vfs_read 函数的进程id, 每2s打印一次 bpftrace -e kprobe:vfs_read {ID pid;} interval:s:2 {printf{"ID:%d\n", ID);}用户态调试 bpftrace -e uprobe:/*/a.out:and {printf("ID:%d\n&qu…

费解的开关/翻硬币

&#x1f331;博客主页&#xff1a;大寄一场. &#x1f331;系列专栏&#xff1a; 算法 &#x1f618;博客制作不易欢迎各位&#x1f44d;点赞⭐收藏➕关注 题目&#xff1a;费解的开关 你玩过“拉灯”游戏吗&#xff1f; 25盏灯排成一个 55 的方形。 每一个灯都有一个开关&…

看完这篇入门性能测试

大家好&#xff0c;我是洋子。最近组内在进行服务端高并发接口的性能压测工作&#xff0c;起因是2023年2月2日&#xff0c;针对胡某宇事件进行新闻发布会直播&#xff0c;几十万人同时进入某媒体直播间&#xff0c;造成流量激增 从监控上可以看出&#xff0c;QPS到达某峰值后&…

brew安装问题

最近使用mac安装了Python和PyCharm&#xff0c;使用python中的绘制图像的turtle库后&#xff0c;执行报错&#xff1a; import _tkinter # If this fails your Python may not be configured for Tk ModuleNotFoundError: No module named _tkinter 查询后需在mac 命令行执行&…

【网络监控】Zabbix详细安装部署(最全)

文章目录Zabbix详细安装部署环境准备安装依赖组件访问初始化配置Zabbix详细安装部署 Zabbix 是一个高度集成的网络监控解决方案&#xff0c;可以提供企业级的开源分布式监控解决方案&#xff0c;由一个国外的团队持续维护更新&#xff0c;软件可以自由下载使用&#xff0c;运作…

【前端必看】极大提高开发效率的网页 JS 调试技巧

大家好&#xff0c;我是前端西瓜哥。本文讲解如何使用浏览器提供的工具进行 JS 代码的断点调试。 debugger 在代码中需要打断点的地方&#xff0c;加上 debugger&#xff0c;表示一个断点。浏览器代码执行到该位置时&#xff0c;会停下来&#xff0c;进入调试模式。 示例代码…

java内存模型的理解

java内存模型的理解并发问题产生的源头缓存导致的可见性问题线程切换导致的原子性问题编译优化带来的有序性问题小结Java内存模型: 解决可见性和有序性问题Java内存模型与JVM内存模型的区别volatile关键字Happens-Before规则小结思考题参考并发问题产生的源头 缓存导致的可见性…

【Verilog】——Verilog简介

目录 1.简介 2.什么是HDL以及HDL的功能 3.Verilog和C语言的比较 4.Verilog的用途 5.数字系统的抽象层次 1.系统级 2.算法级 3.RTL级&#xff08;寄存器变换级&#xff09; 6.数字系统抽象层级 7.自顶向下的结构化设计方法 8.Verilog建模 9.Verilog概述 10.Verilog模块的基本…

Django学习17 -- ManytoManyField

1. ManyToManyField &#xff08;参考&#xff1a;Django Documentation Release 4.1.4&#xff09; 类定义 class ManyToManyField(to, **options)使用说明 A many-to-many relationship. Requires a positional argument: the class to which the model is related, which w…

推导部分和——带权并查集

题解&#xff1a; 带权并查集 引言&#xff1a; 带权并查集是一种进阶的并查集&#xff0c;通常&#xff0c;结点i的权值等于结点i到根节点的距离&#xff0c;对于带权并查集&#xff0c;有两种操作需要掌握——Merge与Find&#xff0c;涉及到路径压缩与维护权值等技巧。 带…

用Python批量重命名文件

案例 今天,我们来整理文件夹中的文件,给某个文件夹下的所有文件重新命名。要求是给所有文件按照修改时间,按顺序在文件名前面加上编号。比如将文件资料.xlsx重命名为1. 资料.xlsx import osdef Get_modify_time(file):return os.path.getmtime(file) #获取文件修改时间path…

vue3的v-model指令

1. 普通input输入框双向绑定 <template><!-- 1. 普通input输入框双向绑定 --><!-- 其实等价于&#xff1a;<input :modelValue"title" update:modelValue"newTitle>titlenewTitle"/> --><input type"text" v-mod…

Junit测试框架

一、简介 Junit框架是一个开源的Java语言单元测试框架&#xff0c;Java方向使用最广泛的单元测试框架&#xff0c;使用Java开发者都应该学习Junit并能掌握单元测试的编写。 对于Junit和Selenium的关系&#xff1a;通俗点来说Selenium如果比喻为灯泡&#xff0c;那么Junit就是电…

【蓝桥杯集训15】求最短路存在负权边——spaf算法(2 / 4)

——SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称 单源最短路&#xff0c;且图中没有负环就可以用spfa 目录 spaf求最短路模板 852. spfa判断负环 341. 最优贸易 - 3305. 作物杂交 - spaf求最短路模板 只有当一个点的前驱结点更新了&#xff0c;该节点才会得到…

操作系统——16.时间片轮转、优先级、多级反馈队列算法

这篇文章我们来看一下进程调度算法中的时间片轮转、优先级、多级反馈队列算法 目录 1.概述 2.时间片轮转调度算法&#xff08;RR&#xff0c;Round-Robin&#xff09; 3.优先级调度算法 4.多级反馈队列调度算法 5.分析对比 1.概述 首先&#xff0c;我们来看一下这篇文章…

计算机网络整理

TCP与UDP 介绍 HTTP&#xff1a;&#xff08;HyperText Transport Protocol&#xff09;是超文本传输协议的缩写&#xff0c;它用于传送WWW方式的数据&#xff0c;关于HTTP协议的详细内容请参考RFC2616。HTTP协议采用了请求/响应模型。 TCP:&#xff08;Transmission Contro…

[YOLO] yolov3、yolov4、yolov5改进

yolov3网络结构图&#xff1a; Yolov3的三个基本组件&#xff1a; &#xff08;1&#xff09;CBL&#xff1a;Yolov3网络结构中的最小组件&#xff0c;由ConvBnLeaky_relu激活函数三者组成。 &#xff08;2&#xff09;Res unit&#xff1a;借鉴Resnet网络中的残差结构&#x…

docker 入门篇

docker为什么会出现&#xff1f; 一款产品&#xff1a;开发---->运维&#xff0c;两套环境&#xff01;应用环境&#xff0c;应用配置&#xff01; 常见问题&#xff1a;我的电脑可以运行&#xff0c;版本更新&#xff0c;导致服务不可用。 环境配置十分的麻烦&#xff0c;…