哈希的概念
哈希表就是通过哈希映射,让key值与存储位置建立关联。比如,一堆整型{3,5,7,8,2,4}在哈希表的存储位置如图所示:
插入数据的操作:
在插入数据的时候,计算数据相应的位置并进行插入。
查找数据的操作:
计算key值所在的位置,并判断该位置的值是否等于key,如果等于查找成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称
为哈希表(Hash Table)(或者称散列表)
哈希冲突
所谓哈希冲突,就是前后插入的key值通过计算,得到的存储位置的地址是相同的,这种现象就是哈希冲突,也称为哈希碰撞。可以把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。比如在上面的图中,可以看到2和4都为哈希冲突现象。
哈希函数
引起哈希冲突的原因之一可能是哈希函数的设计不合理,即计算存储地址的算法出现了不合理。
哈希函数设计原则:
哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。哈希函数计算出来的地址能均匀分布在整个空间中。哈希函数应该比较简单。
常用的哈希函数:
①直接定址法:取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B。其优点是简单切数据分布均匀。其缺点是需要事先知道关键字的分布情况,因此直接定址法适用于数据小且连续的情况。
②除留余数法:设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址。
闭散列
为了解决哈希冲突,有闭散列和开散列两种常见方法。接下来先介绍闭散列。
闭散列也叫做开放定址法,当哈希冲突的时候,如果哈希表没有被装满,说明哈希表中有其它位置,那么就把key值存放到冲突位置的下一个空位置上。(这里的下一个位置,并不是说真正的下一个位置,而是往后找,找到一个空位置)。
线性探测
线性探测就是:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入步骤:①通过哈希函数获取待插入元素在哈希表中的位置。②如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。
删除操作:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。因此线性探测采用标记的伪删除法来删除一个元素。
闭散列哈希表的简单代码实现:
定义哈希表存储的节点,使用状态来表示闭散列中元素的删除或空位置。
//定义状态。用于插入删除操作
enum State
{
EMPTY,
EXIST,
DELETE,
};
//每一个数据的节点
template<class K,class V>
struct HashData
{
pair<K, V> _kv;
State _state = EMPTY;
};
插入操作:
插入操作的思路是拿着需要插入的数据进行取模,取模得到初步确认的下标。然后从这个下标开始寻找存储状态为EMPTY空的位置,然后插入数据。
负载因子:闭散列哈希表最好不能满,即留出一些空位置。因此我们通过负载因子来判断是否需要扩容。当负责因子大于等于0.7,即哈希表的位置已经使用了百分之七十的时候,就扩容。负责因子的计算方法是哈希表中有效数据个数/哈希表的大小。
扩容的方法:创建一个新的哈希对象,然后遍历旧的哈希表,根据旧的哈希表的数据来重新计算数据的位置。在新表插入数据的操作就是使用这个新的哈希对象调用insert函数即可。
bool Insert(const pair<K, V>& kv)
{
//如果存在了就直接返回false;
if (Find(kv.first))
return false;
//负载因子如果大于0.7,则扩容
if (_n * 10 / _tables.size() >= 7)
{
HashTable<K, V, Hash> newHt;
//扩容原来的两倍
newHt._tables.resize(_tables.size() * 2);
//这一步是按照旧表中的数据插入到新表中
for (auto& e : _tables)
{
//如果旧表中的数据存在,状态为EXIST,
//那么让新表调用Insert函数,这不是递归哦!
if (e._state == EXIST)
{
newHt.Insert(e._kv);
}
}
//最后,让原本在vector中的旧表,与新表交换。
_tables.swap(newHt._tables);
}
//不需要扩容
Hash hf;
//因为是泛型,不知道使用的类型是int还是char还是string
//因此,需要获取该类型变量的值的整型,再去模size;
size_t hashi = hf(kv.first) % _tables.size();
while (_tables[hashi]._state == EXIST)
{
//线性探测
++hashi;
hashi %= _tables.size();
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXIST;
++_n;
return true;
}
删除操作:
由于直接将哈希表中的数据删除,会影响后续的其它操作,因此对于闭散列哈希表使用伪善处。把要删除的数据的状态置为DELETE即可。
bool Erase(const K& key)
{
Data* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
--_n;
return true;
}
else
{
return false;
}
}
查找操作:
若要查找key值的话,先计算出下标,然后从这个位置开始遍历查找,当这个位置上的数据与key值相同并且其状态为EXIT,那么就返回地址。如果找不到返空指针。
Data* Find(const K& key)
{
Hash hf;
size_t hashi = hf(key) % _tables.size();
while (_tables[hashi]._state != EMPTY)
{
if ((_tables[hashi]._state == EXIST) && (_tables[hashi]._kv.first == key))
{
return &_tables[hashi];
}
++hashi;
hashi %= _tables.size();
}
return nullptr;
}
由于哈希表的数据类型是泛型,我们不知道要传入的数据类型是int还是string还是什么类型的,因此闭散列的难点之一是取模。因此我们要将key转化成整型,然后去取模。
如果原本就是整型,那么就直接返回这个值。如果是string类,那么就逐个将单个字符取出并累加起来,转为size_t类型做返回值。每获取一个字符,将其*31。因为对于字符串来说,冲突的可能很大,乘31减少冲突性。
代码如下:
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
//特化
template<>
struct HashFunc<string>
{
size_t operator()(const string& key)
{
size_t hash = 0;
for (auto ch : key)
{
hash *= 31;
hash += ch;
}
return hash;
}
};
整体代码如下:
#pragma once
#include <iostream>
#include <vector>
#include <string>
using namespace std;
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
//特化
template<>
struct HashFunc<string>
{
size_t operator()(const string& key)
{
size_t hash = 0;
for (auto ch : key)
{
hash *= 31;
hash += ch;
}
return hash;
}
};
namespace closehash
{
//定义状态。用于插入删除操作
enum State
{
EMPTY,
EXIST,
DELETE,
};
//每一个数据的节点
template<class K,class V>
struct HashData
{
pair<K, V> _kv;
State _state = EMPTY;
};
template<class K,class V,class Hash = HashFunc<K>>
class HashTable
{
typedef HashData<K, V> Data;
public:
//初始化
HashTable()
:_n(0)
{
_tables.resize(10);
}
bool Insert(const pair<K, V>& kv)
{
//如果存在了就直接返回false;
if (Find(kv.first))
return false;
//负载因子如果大于0.7,则扩容
if (_n * 10 / _tables.size() >= 7)
{
HashTable<K, V, Hash> newHt;
//扩容原来的两倍
newHt._tables.resize(_tables.size() * 2);
//这一步是按照旧表中的数据插入到新表中
for (auto& e : _tables)
{
//如果旧表中的数据存在,状态为EXIST,
//那么让新表调用Insert函数,这不是递归哦!
if (e._state == EXIST)
{
newHt.Insert(e._kv);
}
}
//最后,让原本在vector中的旧表,与新表交换。
_tables.swap(newHt._tables);
}
//不需要扩容
Hash hf;
//因为是泛型,不知道使用的类型是int还是char还是string
//因此,需要获取该类型变量的值的整型,再去模size;
size_t hashi = hf(kv.first) % _tables.size();
while (_tables[hashi]._state == EXIST)
{
//线性探测
++hashi;
hashi %= _tables.size();
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXIST;
++_n;
return true;
}
Data* Find(const K& key)
{
Hash hf;
size_t hashi = hf(key) % _tables.size();
while (_tables[hashi]._state != EMPTY)
{
if ((_tables[hashi]._state == EXIST) && (_tables[hashi]._kv.first == key))
{
return &_tables[hashi];
}
++hashi;
hashi %= _tables.size();
}
return nullptr;
}
bool Erase(const K& key)
{
Data* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
--_n;
return true;
}
else
{
return false;
}
}
private:
vector<Data> _tables;//将每个数据放到vector中
size_t _n = 0;//哈希表中存储的有效数据的个数
};
}