代码随想录算法训练营day49 | 动态规划 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

news2025/1/14 1:25:19

day49

      • 123.买卖股票的最佳时机III
        • 1.确定dp数组以及下标的含义
        • 2.确定递推公式
        • 3.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组
      • 188.买卖股票的最佳时机IV
        • 1.确定dp数组以及下标的含义
        • 2.确定递推公式
        • 4.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组

123.买卖股票的最佳时机III

题目链接
解题思路: 关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

动规五部曲

1.确定dp数组以及下标的含义

一天一共就有五个状态,

  • 没有操作 (其实我们也可以不设置这个状态)
  • 第一次持有股票
  • 第一次不持有股票
  • 第二次持有股票
  • 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票
例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例
在这里插入图片描述
大家可以看到红色框为最后两次卖出的状态。

整体代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

188.买卖股票的最佳时机IV

题目链接
解题思路:
动规五部曲如下

1.确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
所以二维dp数组的C++定义为:

vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));

2.确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和动态规划:123.买卖股票的最佳时机III 最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。

4.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {
    dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。
在这里插入图片描述
最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

C++代码如下:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {

        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
        for (int j = 1; j < 2 * k; j += 2) {
            dp[0][j] = -prices[0];
        }
        for (int i = 1;i < prices.size(); i++) {
            for (int j = 0; j < 2 * k - 1; j += 2) {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/387842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Zookeeper3.5.7版本——选举机制(非第一次启动)

目录一、ZooKeeper集群中哪些情况会进入Leader选举二、当一台机器进入Leader选举流程时&#xff0c;当前集群的两种状态2.1、集群中本来就已经存在一个Leader2.2、集群中确实不存在Leader三、Zookeeper中的一些概念了解3.1、SID3.2、ZXID3.3、Epoch一、ZooKeeper集群中哪些情况…

谈“对象“

面向对象一切皆对象&#xff0c;和java一样&#xff0c;各编程语言一样的思想规范类名首字母大写&#xff0c;和java一样创建的规范python3创建类的时候&#xff0c;可以不带括号&#xff0c;也可以带&#xff0c;也可以显示继承object&#xff0c;如果带个()空括号&#xff0c…

【网络】序列化和反序列化

&#x1f941;作者&#xff1a; 华丞臧. &#x1f4d5;​​​​专栏&#xff1a;【网络】 各位读者老爷如果觉得博主写的不错&#xff0c;请诸位多多支持(点赞收藏关注)。如果有错误的地方&#xff0c;欢迎在评论区指出。 推荐一款刷题网站 &#x1f449; LeetCode刷题网站 文章…

WSL2使用Nvidia-Docker实现深度学习环境自由部署

1. Win11 显卡驱动的安装 注意&#xff1a;WSL2中是不需要且不能安装任何显卡驱动的&#xff0c;它的显卡驱动完全依赖于 Win11 中的显卡驱动&#xff0c;因此我们只需要安装你显卡对应的 Win11 版本显卡驱动版本&#xff08;必须是 Win11 版本的驱动&#xff09;&#xff0c;…

Three.js高级应用--利用Three.js+WebGL实现fbx和obj格式模型的自定义加载

通过对webgl和three.js的不断学习与实践&#xff0c;在三维应用场景建设过程中&#xff0c;利用Three.js与webgl配合可以实现大部分三维场景的应用需求&#xff0c;这一篇主要讲述如何利用Three.js加载已有的模型&#xff0c;支持的三维模型格式有.fbx和.obj&#xff0c;同时.o…

English Learning - L2 第1次小组纠音 [ɑː] [ɔː] [uː] 2023.2.25 周六

English Learning - L2 第1次小组纠音 [ɑː] [ɔː] [uː] 2023.2.25 周六共性问题分析大后元音 [ɑː]大后元音 [ɔː]后元音 [uː]我的发音问题后元音 [uː]大后元音 [ɑː] 和 [ɔː]纠音过程第一次第二次第三次共性问题分析 大后元音 [ɑː] 嘴唇过于松散&#xff0c;没…

SpringMVC文件上传、下载、国际化配置

Java知识点总结&#xff1a;想看的可以从这里进入 目录3.6、文件上传、下载3.6.1、文件上传3.6.2、文件下载3.7、国际化配置3.6、文件上传、下载 3.6.1、文件上传 form 表单想要具有文件上传功能&#xff0c;其必须满足以下 3 个条件。 form 表单的 method 属性必须设置为 p…

Spring基础知识(Spring注解开发大全)

原本xml文件写法 文件头 文件信息 配置Bean 初步修改的xml文件写法 文件头 文件信息 <context:component-scan base-package"要扫描的包"/>注解开发Bean 第一步&#xff1a;写config文件 Configuration//代表xml文件的文件头 ComponentScan(“要扫描的包”…

大型JAVA版云HIS医院管理系统源码 Saas应用+前后端分离+B/S架构

SaaS运维平台多集团多医院入驻强大的电子病历完整文档 有源码&#xff0c;有演示&#xff01; 云HIS系统技术栈&#xff1a; 1、前端框架&#xff1a;AngularNginx 2、后台框架&#xff1a;JavaSpring&#xff0c;SpringBoot&#xff0c;SpringMVC&#xff0c;SpringSecurity&…

【2022.1.3】手脱压缩壳练习(含练习exe)

【2022.1.3】手脱压缩壳练习&#xff08;含练习exe&#xff09; 文章目录【2022.1.3】手脱压缩壳练习&#xff08;含练习exe&#xff09;0、简介1、单步跟踪法&#xff08;#&#xff09;方法介绍&#xff08;0&#xff09;练习exe下载&#xff08;1&#xff09;、查看源程序&am…

精确率与召回率,ROC曲线与PR曲线

精确率与召回率&#xff0c;ROC曲线与PR曲线 在机器学习的算法评估中&#xff0c;尤其是分类算法评估中&#xff0c;我们经常听到精确率(precision)与召回率(recall)&#xff0c;ROC曲线与PR曲线这些概念&#xff0c;那这些概念到底有什么用处呢&#xff1f; 首先&#xff0c…

Linux系统GPIO应用编程

目录应用层如何操控GPIOGPIO 应用编程之输出GPIO 应用编程之输入GPIO 应用编程之中断在开发板上测试GPIO 输出测试GPIO 输入测试GPIO 中断测试本章介绍应用层如何控制GPIO&#xff0c;譬如控制GPIO 输出高电平、或输出低电平。应用层如何操控GPIO 与LED 设备一样&#xff0c;G…

【办公类05-03】Python批量修改文件名前面的序号(已有的序号错了,需要改成正确的号码)

背景需求下载教程&#xff0c;手动输入编号&#xff0c;有一个编号错误&#xff0c;导致后面所有编号都错了。30实际是29&#xff0c;以此类推怎样才能快速修改编号数字&#xff1f;前期考虑到可能要改编号&#xff0c;所以在每个编号后面加“ ”&#xff08;空格&#xff09;&…

python版协同过滤算法图书管理系统

基于协同过滤算法的图书管理系统 一、简介&#xff08;v信&#xff1a;1257309054&#xff09; ​ 本系统基于推荐算法给用户实现精准推荐图书。 ​ 根据用户对物品或者信息的偏好&#xff0c;发现物品或者内容本身的相关性&#xff0c;或者是发现用户的相关性&#xff0c;然…

Typora上传文档图片链接失效的问题+PicGo布置图床在Github

文章目录typora图片链接失效原因PicGO开源图床布置先配置Github2.1先创建新仓库、用于存放图片2.2生成一个token&#xff0c;用picGo访问github3.下载picGo,并进行配置3.1 配置v4.1typora图片链接失效原因 因为你是保存在本地的&#xff0c;因此图片是不能访问&#xff0c;可以…

laravel 邮件发送

配置 Laravel 的邮件服务可以通过 config/mail.php 配置文件进行配置。 邮件中的每一项都在配置文件中有单独的配置项&#xff0c;甚至是独有的「传输方式」&#xff0c;允许你的应用使用不同的邮件服务发送邮件 mailers > [smtp > [transport > smtp,host > env(M…

【超级猜图案例上半部分的实现 Objective-C语言】

一、超级猜图这么一个案例: 1.实现之后的效果是这样的: 1)中间有一个图片,点一下,能放大,背景变半透明的黑色: 2)再点一下图片,或者点周围黑色的阴影,图片回归原状, 3)右边有一个“大图”按钮,点一下,实现跟点图片一样的效果, 4)左边有一个“提示”按钮,点…

【Java学习笔记】4.Java 对象和类

前言 本章介绍Java的对象和类。 Java 对象和类 Java作为一种面向对象语言。支持以下基本概念&#xff1a; 多态继承封装抽象类对象实例方法重载 本节我们重点研究对象和类的概念。 对象&#xff1a;对象是类的一个实例&#xff08;对象不是找个女朋友&#xff09;&#x…

为什么人们宁可用Lombok,也不把成员设为public?

目录专栏导读一、从零了解JavaBean1、基本概念2、JavaBean的特征3、JavaBean的优点二、定义最简单的JavaBean三、思考一个问题&#xff0c;为何属性是private&#xff0c;然后用get/set方法&#xff1f;四、下面系统的分析以下&#xff0c;why?五、不和谐的声音&#xff0c;禁…

MySQL实战解析底层---行锁功过:怎么减少行锁对性能的影响

目录 前言 从两阶段锁说起 死锁和死锁检测 前言 MySQL 的行锁是在引擎层由各个引擎自己实现的但并不是所有的引擎都支持行锁&#xff0c;比如MyISAM 引擎就不支持行锁不支持行锁意味着并发控制只能使用表锁&#xff0c;对于这种引擎的表&#xff0c;同一张表上任何时刻只能有…