OpenAI Whisper and ChatGPT ASR Gradio Web UI
- 一 环境准备
- 1.1 python
- 1.2 windows
- 二 导入所需要的包
- 三 加载模型
- 四 定义openai和whisper接口
- 五 生成Gradio Web UI
麦克风输入,展示三种结果
- 输入ASR结果
- 输出文本
- 输出TTS结果
一 环境准备
1.1 python
gradio==3.19.1
gTTS==2.3.1
openai==0.27.0
openai-whisper==20230124
1.2 windows
使用以下命令安装 ffmpeg
choco install ffmpeg
需要科学上网,否则连接超时
二 导入所需要的包
import whisper
import gradio as gr
import time
import warnings
import json
import openai
import os
from gtts import gTTS
三 加载模型
openai.api_key='输入你自己的openai-key'
model = whisper.load_model("base")
四 定义openai和whisper接口
def chatgpt_api(input_text):
messages = [
{"role": "system", "content": "you are great!"}]
if input_text:
messages.append(
{"role": "user", "content": input_text},
)
chat_completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=messages
)
reply = chat_completion.choices[0].message.content
return reply
def transcribe(audio):
language = "zh-CN"
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
options = whisper.DecodingOptions(fp16 = False)
result = whisper.decode(model, mel, options)
result_text = result.text
out_result = chatgpt_api(result_text)
audioobj = gTTS(text = out_result,
lang = language,
slow = False)
audioobj.save("Aria.mp3")
return [result_text, out_result, "Aria.mp3"]
五 生成Gradio Web UI
output_1 = gr.Textbox(label="Speech to Text")
output_2 = gr.Textbox(label="ChatGPT Output")
output_3 = gr.Audio("Aria.mp3")
gr.Interface(
title = 'OpenAI Whisper and ChatGPT ASR Gradio Web UI',
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath")
],
outputs=[
output_1, output_2, output_3
],
live=True).launch()
参考:https://github.com/bhattbhavesh91/voice-assistant-whisper-chatgpt