一文读懂PaddleSpeech中英混合语音识别技术

news2024/11/15 23:59:40

bcb58be0272eba17fe4b6d62f3cacb8d.gif

语音识别技术能够让计算机理解人类的语音,从而支持多种语音交互的场景,如手机应用、人车协同、机器人对话、语音转写等。然而,在这些场景中,语音识别的输入并不总是单一的语言,有时会出现多语言混合的情况。例如,在中文场景中,我们经常会使用一些英文专业术语来表达意思,如“GPS信号弱”、“Java工程师”等,这就给语音识别技术带来了新的挑战。

本次PaddleSpeech发布的中英文语音识别预训练模型Conformer_talcs可以通过PaddleSpeech封装的命令行工具CLI或者Python接口快速使用,开发者们可以基于此搭建自己的智能语音应用,也可以参考示例训练自己的中英文语音识别模型。

  • 示例链接

https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/tal_cs/asr1

快速体验

  • 示例音频

https://paddlespeech.bj.bcebos.com/PaddleAudio/ch_zh_mix.wav

使用命令行工具CLI 快速体验语音识别效果,命令如下:

bash

paddlespeech asr --model conformer_talcs --lang zh_en --codeswitch True --input ./ch_zh_mix.wav -v

# 终端输出:今天是monday 明天是tuesday

Python 接口快速体验,代码实现如下:

python
>>> import paddle
>>> from paddlespeech.cli.asr import ASRExecutor
>>> asr_executor = ASRExecutor()
>>> text = asr_executor(
    model='conformer_talcs',
    lang='zh_en',
    sample_rate=16000,
    config=None, 
    ckpt_path=None,
    audio_file='./ch_zh_mix.wav',
    codeswitch=True,
    force_yes=False,
    device=paddle.get_device())
>>> print('ASR Result: \n{}'.format(text))
ASR Result:
今天是 monday 明天是tuesday

76dcbe49d4ff0d141bcb10ca6d704701.png

中英文语音识别技术

cbb3fa6de96887c40c4af3869218bb7b.png

中英文语音识别难点

中英文语音识别相较于单语言的语音识别而言,主要难点如下:

数据量少

中英混合数据相较于单语言的数据更少。目前开源的中文语音识别数据集如WenetSpeech(10000小时有监督,2500小时弱监督,10000小时无监督)、英文语音识别数据集Giga Speech(10000小时有监督,33000小时无监督)都达到了万小时级别,但是混合的开源中英文语音识别数据只有SEAME(120小时)和TAL_CSASR(587小时)两个开源数据,混合数据集比单语言数据集会更少。

中英相似发音易混淆

中英文语音识别需要一个单一的模型来学习多种语音,相似但具有不同含义的发音通常会导致模型的复杂度和计算量增加,同时由于它需要区分处理不同语言的类似发音,因此在模型建模时就需要按照不同语言区分不同的建模单元。

634befa22e0202570376ae3b8b6dbd3e.png

PaddleSpeech 中英文语音识别方案

模型选择与介绍

本方案使用了一种端到端语音识别模型Conformer U2模型,其采用了Joint CTC/Attention with Transformer or Conformer的结构。训练时使用CTC 和 Attention Loss 联合优化,并且通过dynamic chunk的训练技巧,使Shared Encoder能够处理任意大小的chunk(即任意长度的语音片段)。其还使用CTC-Prefix Beam Search和Attention Decoder的方式进行解码,得到最终结果,同时实现了流式和非流式的语音识别,支持控制推理延迟。

本次PaddleSpeech开源的预训练模型,是非流式的端到端识别Conformer U2模型,chunk中包含全部上下文信息,需要整句输入进行识别。如果你想训练流式中英文语音识别模型,也可以参考PaddleSpeech的Conformer U2/U2++模型流式语音识别的示例训练自己的流式中英文语音识别模型。

  • 示例链接

https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/wenetspeech/asr1

2fae810345f5f33890f627df155a8c93.png

Conformer U2 结构示意图[1]

数据集介绍

本次使用了TAL_CSASR中英混合语音数据集。语音场景为语音授课音频,包括中英混合讲课的情况,总计587小时语音。

  • 数据集下载地址

https://ai.100tal.com/dataset

c833ca7c58dbbebc44997a54f9f601fd.png

数据集介绍[2]

中英混合语音识别建模单元

在中文语音识别系统中,常采用音素、汉字、词等作为声学模型的建模单元,在英文语音识别系统中则常采用英文音素、国际音标、子词等作为声学模型的建模单元。

本次PaddleSpeech开源的预训练中英文语音识别模型是采用端到端语音识别模型Conformer U2,未接入语言模型,使用了中文字/词加英文子词的建模方法,将中英文分开建模,通过模型推理,直接得到识别后的结果。

6df10023c8cdd4c42bf06039575a0b84.png

试验结果对比

由于本项目使用的是中英文混合数据集,所以我们选择混合错误率(MER,Mix Error Rate)作为评价指标,中文部分计算字错误率(CER,Character Error Rate),英文部分计算词错误率(Word Error Rate)。测试数据集选择TAL_CSASR中已经划分好的测试集。由于不同的解码方式识别的效果不同,这里我们使用 Attention、CTC Greedy Search、CTC Prefix Beam Search、Attention Rescoring 四种解码方式进行试验,解码效果最佳为Attention Rescoring,混合错误率MER为0.084,折算为我们常说的语音识别正确率91.6%。

9475a9f762a6c9816157248a18629f8d.png

进一步优化与效果提升

当前中英文语音识别方案的效果还有进一步提升的空间,比如在Conformer U2 模型后面加入Language Model,通过语言模型学习中英文语言信息,PaddleSpeech中提供了基于N-Gram的语言模型训练方案。此外,可以在训练过程中加入Language ID,使用token级别或者帧级别的语言ID标注信息,可以进一步提高中英文语音识别的效果。如果你有更大的中英文混合数据集或者是场景相关的数据集,可以通过微调或者进一步训练,提高在业务场景中的识别效果。

3bc8297edffb9be15db6f4fd94ef0b19.png

PaddleSpeech 语音识别技术介绍

除了中英文混合的Conformer U2模型以外,飞桨语音模型库PaddleSpeech中包含了多种语音识别模型,能力涵盖了声学模型、语言模型、解码器等多个环节,支持多种语言。目前PaddleSpeech已经支持的语音识别声学模型包括DeepSpeech2、Transfromer、Conformer U2/U2 ++,支持中文和英文的单语言识别以及中英文混合识别;支持CTC前束搜索(CTC Prefix Beam Search)、CTC贪心搜索(CTC Greedy Search)、注意力重打分(Attention Rescoring)等多种解码方式;支持 N-Gram语言模型、有监督多语言大模型Whisper、无监督预训练大模型wav2vec2;同时还支持服务一键部署,可以快速封装流式语音识别和非流式语音识别服务。通过PaddleSpeech提供的命令行工具CLI和Python接口可以快速体验上述功能。

通过PaddleSpeech精品项目合集,可以在线体验PaddleSpeech的优秀项目,上面更有PaddleSpeech核心开发者精心打造的《飞桨PaddleSpeech语音技术课程》,帮助开发者们快速入门。

  • 项目传送门

https://aistudio.baidu.com/aistudio/projectdetail/4692119?contributionType=1

6a0ac5c28dd01ffc50151e6b3a570eab.gif

如果您想了解更多有关PaddleSpeech的内容,欢迎前往PaddleSpeech主页学习更多用法,Star 关注,获取PaddleSpeech最新资讯。

  • PaddleSpeech地址

https://github.com/PaddlePaddle/PaddleSpeech

af593e21460772ab0cf7718c53a7ac0c.png

引用

[1] 模型结构图

https://arxiv.org/pdf/2012.05481.pdf

[2] 数据集介绍

https://ai.100tal.com/dataset

拓展阅读

  • 提速300%,PaddleSpeech 语音识别高性能部署方案重磅来袭

  • 定制音库成本骤降98%,PaddleSpeech小样本语音合成方案重磅来袭


04bd7c69ddabca4daad8ed82e004ad2d.gif

关注【飞桨PaddlePaddle】公众号

获取更多技术内容~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/381839.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PMP怎么对项目工程师的职业生涯产生影响?

职业生涯的影响无非两个: 工作能力增强升职加薪 考取证书你能获得: a、全面的、科学的、专业的项目管理架构理论知识; b、经过模拟实践题的联系,项目经验可以媲美拥有三年以上的项目管理经验的项目管理人士; c、所学的知识基础与实践已经获得…

flutter 优化检测工具

本篇内容主要结合我的另一篇文章flutter 开发App优化之旅同步补充的一篇文章,以供各位攻城狮借鉴共勉。 1、Flutter Inspector (debug模式下) Flutter Inspector有很多功能,其中有两个功能更值得我们去关注,例如:“Select Widget…

Python+Yolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别

PythonYolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01;前言这篇博客针对<<PythonYolov5跌倒摔倒人体特征识别>>编写代码&#xff0c;代码整洁&…

Torch中常见插值方式及各自的优缺点

Pytorch常见插值方式及优缺点1 插值算法2 Pytorch中能看到的插值方式3 Nearest插值法3.1 方法介绍3.2 优缺点4 Linear插值法4.1 方法接受4.2 优缺点5 Bilinear插值法5.1 方法介绍5.2 优缺点6 Bicubic插值法6.1 方法介绍6.2 优缺点7 Trlinear插值法7.1 方法介绍7.2 优缺点8 图片…

C#窗体应用程序可能会遇到的一些奇怪问题

最近在上程序实训课&#xff0c;写一个管理程序&#xff0c;主要是用了C#&#xff0c;在VS2017平台&#xff0c;在开发过程中自然是少不了很多奇怪的问题&#xff0c;做个记录。 有下面几个问题: 问题1&#xff1a;.Conversion failed when converting from a character stri…

小红书“复刻”微信,微信“内造”小红书

配图来自Canva可画 随着互联网增长红利逐渐见顶&#xff0c;各大互联网平台对流量的争夺变得愈发激烈。而为了寻找新的业务可能性&#xff0c;各家都在不遗余力地拓宽自身边界。在此背景下&#xff0c;目前最为“吸睛”和“吸金”的社交、电商、种草、短视频等领域&#xff0c…

linux创建文件软连接和硬链接详解

前言linux系统中链接文件仔细区分可以分为软连接&#xff08;符号链接&#xff09;和硬链接。软链接比硬链接应用更广泛&#xff0c;所以也可以认为linux链接文件就是指软链接文件。本文将会在第2部分介绍创建软链接和硬链接的基本命令&#xff0c;在第3部分从linux文件系统的角…

Gated Activations门控激活单元

门控激活 在架构图的方框部分&#xff0c;您会注意到扩张卷积输出分成两个分支&#xff0c;随后通过逐元素乘法重新组合。这描绘了一个门控激活单元&#xff0c;其中我们将tanh激活分支解释为一个学习过滤器&#xff0c;将sigmoid激活分支解释为一个学习门&#xff0c;用于调节…

(五十五)大白话更新数据的时候,自动维护的聚簇索引到底是什么?

上一次我们给大家讲了一下基于主键如何组织一个索引&#xff0c;然后建立索引之后&#xff0c;如何基于主键在索引中快速定位到那行数据所在的数据页&#xff0c;再如何进入数据页快速到定位那行数据&#xff0c;大家看下面的图。 我们今天就先基于上面的图&#xff0c;把按照主…

·神经网络

目录11神经网络demo112神经网络demo213神经网络demo320tensorflow2.0 安装教程,所有安装工具&#xff08;神经网络&#xff09;21神经网络-线性回归- demo122神经网络-线性回归- demo228神经网络-多层感知- demo1目录11神经网络demo1 package com.example.xxx; import java.ut…

玩转qsort——“C”

各位CSDN的uu们你们好呀&#xff0c;今天小雅兰的内容还是我们的深度剖析指针呀&#xff0c;上篇博客我们学习了回调函数这个知识点&#xff0c;但是没有写完&#xff0c;因为&#xff1a;小雅兰觉得qsort值得单独写出来&#xff01;&#xff01;&#xff01;好啦&#xff0c;就…

Ae:合成设置

Ae菜单&#xff1a;合成/合成设置Composition Settings快捷键&#xff1a;Ctrl K合成名称Composition Name为合成定义一个恰当的名称以便于查找和识别。◆ ◆ ◆基本Basic有关合成的一些常规设置。预设Preset给出了适合各种平台的常用预设。也可以创建并保存自己的自定义预设…

项目请求地址自动加上了本地ip的解决方式

一般情况下来说都是一些粗心大意的问题导致的 场景一&#xff1a;少加了/ 场景二&#xff1a;前后多加了空格 场景三&#xff1a;拼接地址错误![

改进YOLO系列 | ICLR2022 | OMNI-DIMENSIONAL DYNAMIC CONVOLUTION: 全维动态卷积

单个静态卷积核是现代卷积神经网络(CNNs)的常见训练范式。然而,最近的动态卷积研究表明,学习加权为其输入依赖注意力的n个卷积核的线性组合可以显著提高轻量级CNNs的准确性,同时保持高效的推理。然而,我们观察到现有的作品通过卷积核空间的一个维度(关于卷积核数量)赋予…

SpringSecurity学习(二)自定义资源认证规则、自定义登录页面、自定义登录(成功/失败)处理、用户信息获取

文章目录一、自定义认证1. 自定义资源权限规则二、自定义登录页面1. 引入thymeleaf依赖&#xff0c;并配置2. 配置SecurityCfg的securityFilterChain实例3. 编写login.html注意&#xff1a;三、自定义登录成功处理1. 编写JsonAuthenticationSuccessHandler处理器&#xff0c;返…

如何在excel中创建斐波那契数列

斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列&#xff0c;因数学家莱昂纳多斐波那契&#xff08;Leonardo Fibonacci&#xff09;以兔子繁殖为例子而引入&#xff0c;故又称为“兔子数列”&#xff0c;指的是这样一个数列&#xff1a;…

软件测试是个人就能做?恕我直言,你可能是个“纯粹”的测试工具人,BUG收集器

作为过来人的我和你说说软件测试的真正情况。 前言 一个软件做出来&#xff0c;最不能少的是谁&#xff1f;毫无疑问是开发&#xff0c;开发是最了解软件运作的那个人&#xff0c;早期就有不少一人撸网站或者APP的例子&#xff0c;相当于一个人同时是产品、研发、测试、运维等…

学习笔记-架构的演进之服务容错策略-服务发现-3月day01

文章目录前言服务容错容错策略附前言 “容错性设计”&#xff08;Design for Failure&#xff09;是微服务的一个核心原则。 使用微服务架构&#xff0c;拆分出的服务越来越多&#xff0c;也逐渐导致以下问题&#xff1a; 某一个服务的崩溃&#xff0c;会导致所有用到这个服务…

webrtc拥塞控制算法对比-GCC vs BBR vs PCC

1.前言现有集成在webrtc中的拥塞控制算法有三种, 分别是: 谷歌自研发的gcc, 谷歌自研发的BBR算法, 斯坦福大学提出的基于机器学习凸优化的PCC算法. 本文将探讨一下三个算法的区别和优缺点。2.背景迈聆会议从17年到现在, 一直使用的是基于谷歌的gcc算法自研的Omcc算法(optimizat…

【基于机器学习的推荐系统项目实战-1】初识推荐系统

本文目录一、为什么我们需要推荐系统&#xff1f;二、推荐系统的发展阶段三、推荐系统模型四、通用推荐系统框架4.1 数据生产4.2 数据存储4.3 算法召回4.4 结果排序4.5 结果应用4.6 新浪微博的框架开源结构图五、推荐常用特征5.1 用户特征5.2 物品特征六、推荐常用算法七、结果…