考研算法
前言
本系列文章涉及的算法内容,针对的是哈尔滨工业大学854科目。在本文中通过具体的算法题进行讲解相应算法。
今天涉及的算法主要有线性筛,十大排序中快速排序和归并排序。
后续会有动态规划的相关算法以及尝试模型的总结,如果对动态规划有兴趣的,可以看我之前的这篇文章,后边都是以这样的形式进行每个动态规划知识点的讲解。
链接如下:https://blog.csdn.net/qq_45992664/article/details/123341143?spm=1001.2014.3001.5502
一、线性筛算法
算法题目:筛质数
给定一个正整数 n,请你求出 1∼n中质数的个数。
输入格式
共一行,包含整数 n。
输出格式
共一行,包含一个整数,表示 1∼n中质数的个数。
数据范围
1 ≤ n ≤ 10^6
输入样例:
8
输出样例:
4
算法思路:
- 切记1不是质数
- 核心:把某一个合数用它的质因数进行筛走。
我们常见的筛法有:朴素筛法(O(LogN * N)),埃式筛法(O(N*log(logN)),线性筛法(O(N))。本文中选择时间复杂度最好的线性筛法。
算法代码:
#include <iostream>
using namespace std;
const int N = 1e6 + 5;
bool st[N];
int primes[N];
int cnt;
void getPrimes(int n){
for(int i = 2; i <= n; ++i){
if(!st[i]){
primes[cnt++] = i;//把质数添加进去
}
//for循环每次进行从0开始到primes[j] * i ~ n,最大到n
for(int j = 0; primes[j] <= n / i; ++j){
st[primes[j] * i] = true;
if(i % primes[j] == 0){
break;
}
}
// 1. 如果 i % primes[j] == 0, 说明primes[j]是i的最小质因子,primes[j]一定是primes[j] * i 的最小质因子。
// 2. 如果 i % primes[j] != 0, 说明primes[j]一定小于i的所有质因子,primes[j]一定是primes[j] * i 的最小质因子。
}
}
int main(){
int n;
scanf("%d", &n);
getPrimes(n);
printf("%d\n", cnt);
return 0;
}
今天的算法除了线性筛比较难点,剩下的排序算法都很简单,直接上代码,不再进行注释。
二、快速排序
算法题目: 快速排序
给定你一个长度为 n的整数数列。
请你使用快速排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n个整数(所有整数均在 1∼10^9 范围内),表示整个数列。
输出格式
输出共一行,包含 n个整数,表示排好序的数列。
数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
算法代码:
java版本
import java.util.Scanner;
public class Main {
public static void quicksort(long a[],int l,int r){
if(l >= r)return;
int i = l-1,j = r + 1;
long x = a[(l + r)/2];
while(i<j){
do i++;while (a[i]<x);
do j--;while (a[j]>x);
if(i<j)
swap(a,i,j);
}
quicksort(a,l,j);
quicksort(a,j+1,r);
}
public static void swap(long[] a,int i,int j){
long tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] arr = new long[n];
for (int i = 0;i < n;i++){
arr[i] = sc.nextInt();
}
quicksort(arr,0,n-1);
for (int i = 0;i < n;i++){
System.out.print(arr[i] + " ");
}
}
}
C++版本
#include<iostream>
using namespace std;
const int N=1e6 + 10;
int a[N];
void quick_sort(int l,int r)
{
if(l>=r) return ;
int i=l-1,j=r+1,x=a[l+r>>1];
while(i<j)
{
do i++;while(a[i]<x);
do j--;while(a[j]>x);
if(i<j) swap(a[i],a[j]);
}
quick_sort(l,j);
quick_sort(j+1,r);
}
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++) scanf("%d",&a[i]);
quick_sort(0,n-1);
for(int i=0;i<n;i++) printf("%d ",a[i]);
return 0;
}
三、归并排序
注:由归并排序衍生出的小和问题,逆序对的数量的问题,后边会进行一一讲解。
算法题目:归并排序
给定你一个长度为 n的整数数列。
请你使用快速排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n个整数(所有整数均在 1∼10^9 范围内),表示整个数列。
输出格式
输出共一行,包含 n个整数,表示排好序的数列。
数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
算法代码:
java版本
import java.io.*;
import java.util.Scanner;
public class Main {
public static void mergeSort(long[] arr){
mergeSort(arr, 0, arr.length - 1);
}
public static void mergeSort(long[] arr, int l, int r){
if(l >= r){
return;
}
int mid = l + ((r - l) >> 1);
mergeSort(arr, l, mid);
mergeSort(arr, mid + 1, r);
long[] help = new long[r - l + 1];
int i = 0;
int p1 = l;
int p2 = mid + 1;
while(p1 <= mid && p2 <= r){
help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
}
while(p1 <= mid){
help[i++] = arr[p1++];
}
while(p2 <= r){
help[i++] = arr[p2++];
}
for(i = 0; i < help.length; ++i){
arr[l + i] = help[i];
}
}
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
String[] str1 = in.readLine().split(" ");
int n = Integer.parseInt(str1[0]);
//int k = Integer.parseInt(str1[1]);
long[] arr = new long[n];
String[] str2 = in.readLine().split(" ");
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(str2[i]);
}
mergeSort(arr, 0, n - 1);
for(int i = 0; i < n; i++){
System.out.print(arr[i] + " ");
}
out.flush();
out.close();
in.close();
}
}
C++版本
#include <algorithm>
#include <iostream>
using namespace std;
void merge_sort(int a[], int l, int r){
if(l >= r){
return;
}
int mid = l + ((r - l) >> 1);
merge_sort(a, l, mid);
merge_sort(a, mid + 1, r);
int help[r - l + 1];
int i = 0;
int p1 = l;
int p2 = mid + 1;
while(p1 <= mid && p2 <= r){
help[i++] = a[p1] < a[p2] ? a[p1++] : a[p2++];
}
while(p1 <= mid){
help[i++] = a[p1++];
}
while(p2 <= r){
help[i++] = a[p2++];
}
for(p1 = l, p2 = 0; p1 <= r; p1++, p2++){
a[p1] = help[p2];
}
}
int main(){
int n;
cin >>n;
int a[n];
for(int i = 0; i < n; i++){
cin >> a[i];
}
merge_sort(a, 0, n - 1);
for(int i = 0; i < n; i++){
cout<< a[i] << " ";
}
return 0;
}
最后介绍一个有意思的算法:高精度阶乘
算法题目: 高精度阶乘
随意输入一个n,要求返回n的阶乘。
一、代码如下:
import java.util.Scanner;
public class LargeIntegerFactorial {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
long[] ans = new long[10001000];
long n = sc.nextLong();
ans[0] = 1;
int l = 0;
long num = 0;
for(int i = 1; i<=n;++i)
{
num = 0;
for(int j = 0; j <= l; j++)
{
num = num + ans[j] * i;
ans[j] = num % 10;
num /= 10;
}
while(num != 0)
{
ans[++l] =num % 10;
num /= 10;
}
}
for(int i = l; i >= 0; --i)
{
System.out.print(ans[i]);
}
return;
}
}
#### 代码解析:
```java
我们接下来把n设置为4,进行代码的实例演示以及解析
{
long[] ans = new long[10001000];//定义答案数组
n = 4;//设置指定数字为4
ans[0] = 1; //将答案数组的第一位设置为1
int l = 0;//定义变量l,用来记录n!的数字有多少位
long num = 0;//定义变量num
for(int i = 1; i<=n;++i)//核心代码,将在下边进行实例解析
{
num = 0;
for(int j = 0; j <= l; j++)
{
num = num + ans[j] * i;
ans[j] = num % 10;
num /= 10;
}
while(num != 0)
{
ans[++l] =num % 10;
num /= 10;
}
}
{
当i == 1时,j == 0, j <= l (0 <= 0), num = 0;
num = num + ans[0] * i = 0 + 1 * 1 = 1;
ans[0] = num % 10 = 1 % 10 = 1;
num = num / 10 = 1 / 10 = 0;
当i == 2时,j == 0,j <= l (0 <= 0),num = 0;
num = num + ans[0] * i = 0 + 1 * 2 = 2;
ans[0] = num % 10 = 2 % 10 = 2;
num = num / 10 = 2 / 10 = 0;
当i == 3时,j == 0,j <= l (0 <= 0),num = 0;
num = num + ans[0] * i = 0 + 2 * 3 = 6;
ans[0] = num % 10 = 6 % 10 = 6;
num = num / 10 = 6 / 10 = 0;
当i == 4时,j == 0,j <= l (0 <= 0),num = 0;
num = num + ans[0] * i = 0 + 6 * 4 = 24;
ans[0] = num % 10 = 24 % 10 = 4;
num = num / 10 = 24 / 10 = 2;
进入while循环,
num = 2 != 0;
ans[++l] = num % 10 = 2 % 10 = 2;(此时l == 1);
ans[1] = 2;
num = num / 10 = 2 / 10 = 0;
当i == 5时,j == 0,j <= l (0 <= 1),num = 0;
num = num + ans[0] * i = 0 + 4 * 5 = 20;
ans[0] = num % 10 = 20 % 10 = 0;
num = num / 10 = 2;
当i == 5时,j == 1,j <= l (1 <= 1),num = 2;
num = num + ans[1] * i = 2 + 2 * 5 = 12;
ans[1] = num % 10 = 12 % 10 = 2;
num = num / 10 = 12 / 10 = 1;
进入while循环,
num = 1 != 0;
ans[++l] = num % 10 = 1 % 10 = 1;(此时l == 2);
ans[2] = 1;
num = num / 10 = 0;
结束。
}
}
代码测试:
1.n = 1000
1000! = 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
计算时间是非常快的,大家可以对照这个链接下的1000!,来看看程序是否算对了,我大致看了下,没有问题。
链接如下:https://www.haomeili.net/JieCheng?JieCheng=1000