StreamYOLO 代码阅读记录

news2025/1/16 16:43:38

目录

一、安装配置环境

二、运行 train.py文件遇到的问题 

问题一

问题二

问题三

问题四

问题五

问题六

问题七 

问题八

二、debug记录

1、 args

 2、optimizer

3、ckpt 

 4、self.seq_dirs

 5、self._classes

6、im_ann

 7、annotations

 8、obj

9、self.train_loader

 10、self.prefetcher

 11、inps  targets

12、 expanded_strides

13、gt_matched_classes

 14、pred_ious_this_matching

 15、matched_gt_inds

16、dynamic_ks

 17、fg_mask

 三、一些入口

1、训练的入口

2、YoloX model 建立

3、 模型训练权重参数的加载

4、train_loader 建立

5、数据送入模型,前向处理,得到输出

6、输入图片的可视化

四、日志打印处

1、

2、

 3、

4、

5、

6、

五、model网络结构

1、网络结构

2、exp中的内容

六、train 的主要过程

1、self.before_train()

 2、self.train_in_epoch

1)  self.before_epoch

2) self.train_in_iter

 self.after_iter

3)self.after_epoch

3、self.after_train


一、安装配置环境

按照官网的步骤做就行

conda create --name streamyolo python=3.7
conda activate streamyolo
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip3 install yolox==0.3

可以提前下载好项目文件,cd 跳转到项目文件下

ADDPATH=$(pwd)
echo export PYTHONPATH=$PYTHONPATH:$ADDPATH >> ~/.bashrc
source ~/.bashrc

上述指令执行完毕后需要重启环境

conda activtae streamyolo

然后安装mmcv

pip install mmcv-full==1.1.5 -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.1/index.html

二、运行 train.py文件遇到的问题 

首先将参数 设置 传入到 环境的设置中去,直接在 parameters中 复制即可

-f
cfgs/m_s50_onex_dfp_tal_flip.py
-d
1
-b
4
-c
yolox_s.pth
-o
--fp16

问题一

ImportError: cfgs/m_s50_onex_dfp_tal_flip.py doesn't contains class named 'Exp'

路径出了问题,将 f 参数的路径设置成绝对路径形式,也就是cfgs/m_s50_onex_dfp_tal_flip.py 用绝对路径代替

解决办法:

-f 参数的设置用如下替代

/home/lingyun/models/StreamYOLO-main/cfgs/m_s50_onex_dfp_tal_flip.py

问题二

PermissionError: [Errno 13] Permission denied: '/data'

找到上述调用的 yolox 设置的文件,如cfgs/m_s50_onex_dfp_tal_flip.py,将 Exp 类中的初始化属性 self.ouput_dir 同样用绝对路径代替。(需要事先创建该文件夹)

原 
self.output_dir = '/data/output/stream_yolo'

替换为

self.output_dir = '/home/lingyun/models/StreamYOLO-main/data/output/stream_yolo'

问题三

FileNotFoundError: [Errno 2] No such file or directory: 'yolox_s.pth'

同样,将 -c 中的模型路径用绝对路径替换

原
yolox_s.pth

替换为
/home/lingyun/models/StreamYOLO-main/yolox_s.pth

问题四

FileNotFoundError: [Errno 2] No such file or directory: '/data/Argoverse-HD/annotations/train.json'

解决方法

在配置文件   m_s50_onex_dfp_tal_filp.py  中把路径替换成绝对路径。在68行

原
data_dir='/data'

替换成
data_dir='/home/lingyun/models/StreamYOLO-main/data'

问题五

Linux终端直接运行,遇到问题

python tools/train.py -f cfgs/m_s50_onex_dfp_tal_flip.py -d 1 -b 4 -c yolox_s.pth -o --fp16

解决

pip install opencv-python-headless

问题六

AssertionError: Caught AssertionError in DataLoader worker process 0.
Original Traceback (most recent call last):
  File "/root/anaconda3/envs/streamyolo/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
    data = fetcher.fetch(index)
  File "/root/anaconda3/envs/streamyolo/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/root/anaconda3/envs/streamyolo/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/root/anaconda3/envs/streamyolo/lib/python3.7/site-packages/yolox/data/datasets/datasets_wrapper.py", line 110, in wrapper
    ret_val = getitem_fn(self, index)
  File "/root/data/zjx/Code-subject/StreamYOLO-main/exps/data/tal_flip_mosaicdetection.py", line 255, in __getitem__
    img, support_img, label, support_label, img_info, id_ = self._dataset.pull_item(idx)
  File "/root/data/zjx/Code-subject/StreamYOLO-main/exps/dataset/tal_flip_one_future_argoversedataset.py", line 227, in pull_item
    img = self.load_resized_img(index)
  File "/root/data/zjx/Code-subject/StreamYOLO-main/exps/dataset/tal_flip_one_future_argoversedataset.py", line 180, in load_resized_img
    img = self.load_image(index)
  File "/root/data/zjx/Code-subject/StreamYOLO-main/exps/dataset/tal_flip_one_future_argoversedataset.py", line 196, in load_image
    assert img is not None
AssertionError

解决办法

参考这里,  也就是数据集的路径不按他的来,按照原来的设置,即

StreamYOLO
├── exps
├── tools
├── yolox
├── data
│   ├── Argoverse-1.1
│   │   ├── tracking
│   │       ├── train
│   │       ├── val
│   │       ├── test
│   ├── Argoverse-HD
│   │   ├── annotations
│   │       ├── test-meta.json
│   │       ├── train.json
│   │       ├── val.json

问题七 

FileNotFoundError: [Errno 2] No such file or directory: '/data/Argoverse-HD/annotations/val.json'
Exception ignored in: <function ONE_ARGOVERSEDataset.__del__ at 0x7f7766301710>
Traceback (most recent call last):
  File "/root/data/zjx/Code-subject/StreamYOLO-main/exps/dataset/tal_flip_one_future_argoversedataset.py", line 55, in __del__
    if self.imgs:
AttributeError: 'ONE_ARGOVERSEDataset' object has no attribute 'imgs'

解决办法

同问题四,在配置文件   m_s50_onex_dfp_tal_filp.py  中把路径替换成绝对路径。在119行

问题八

RuntimeError: CUDA out of memory. Tried to allocate 28.00 MiB (GPU 0; 3.81 GiB total capacity; 2.44 GiB already allocated; 61.00 MiB free; 2.48 GiB reserved in total by PyTorch)

解决方法

将 batch 调小,可以调到1

二、debug记录

1、 args

Namespace(batch_size=4, cache=False, ckpt='/root/data/zjx/Code-subject/StreamYOLO-main/yolox_s.pth', devices=1, dist_backend='nccl', dist_url=None, exp_file='/root/data/zjx/Code-subject/StreamYOLO-main/cfgs/m_s50_onex_dfp_tal_flip.py', experiment_name=None, fp16=True, logger='tensorboard', machine_rank=0, name=None, num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None)

 2、optimizer

SGD (
Parameter Group 0
    dampening: 0
    lr: 0
    momentum: 0.9
    nesterov: True
    weight_decay: 0

Parameter Group 1
    dampening: 0
    lr: 0
    momentum: 0.9
    nesterov: True
    weight_decay: 0.0005

Parameter Group 2
    dampening: 0
    lr: 0
    momentum: 0.9
    nesterov: True
    weight_decay: 0
)

3、ckpt 

 4、self.seq_dirs

 5、self._classes

6、im_ann

 7、annotations

[{'id': 0, 'image_id': 0, 'bbox': [898, 584, 251, 228], 'category_id': 2, 'area': 57228.0, 'iscrowd': False, 'ignore': False, 'track': 0}, {'id': 1, 'image_id': 0, 'bbox': [459, 425, 408, 362], 'category_id': 5, 'area': 147696.0, 'iscrowd': False, 'ignore': False, 'track': 1}, {'id': 2, 'image_id': 0, 'bbox': [416, 272, 27, 72], 'category_id': 6, 'area': 1944.0, 'iscrowd': False, 'ignore': False, 'track': 2}, {'id': 3, 'image_id': 0, 'bbox': [655, 283, 25, 71], 'category_id': 6, 'area': 1775.0, 'iscrowd': False, 'ignore': False, 'track': 3}, {'id': 4, 'image_id': 0, 'bbox': [211, 395, 20, 52], 'category_id': 6, 'area': 1040.0, 'iscrowd': False, 'ignore': False, 'track': 4}, {'id': 5, 'image_id': 0, 'bbox': [306, 422, 17, 39], 'category_id': 6, 'area': 663.0, 'iscrowd': False, 'ignore': False, 'track': 5}, {'id': 6, 'image_id': 0, 'bbox': [173, 558, 162, 75], 'category_id': 5, 'area': 12150.0, 'iscrowd': False, 'ignore': False, 'track': 6}, {'id': 7, 'image_id': 0, 'bbox': [368, 583, 63, 39], 'category_id': 5, 'area': 2457.0, 'iscrowd': False, 'ignore': False, 'track': 7}, {'id': 8, 'image_id': 0, 'bbox': [4, 597, 93, 40], 'category_id': 2, 'area': 3720.0, 'iscrowd': False, 'ignore': False, 'track': 8}, {'id': 9, 'image_id': 0, 'bbox': [81, 591, 94, 44], 'category_id': 2, 'area': 4136.0, 'iscrowd': False, 'ignore': False, 'track': 9}, {'id': 10, 'image_id': 0, 'bbox': [945, 424, 15, 37], 'category_id': 6, 'area': 555.0, 'iscrowd': False, 'ignore': False, 'track': 10}, {'id': 11, 'image_id': 0, 'bbox': [444, 542, 12, 25], 'category_id': 6, 'area': 300.0, 'iscrowd': False, 'ignore': False, 'track': 11}, {'id': 12, 'image_id': 0, 'bbox': [840, 431, 14, 36], 'category_id': 6, 'area': 504.0, 'iscrowd': False, 'ignore': False, 'track': 12}, {'id': 13, 'image_id': 0, 'bbox': [918, 597, 18, 13], 'category_id': 2, 'area': 234.0, 'iscrowd': False, 'ignore': False, 'track': 13}, {'id': 14, 'image_id': 0, 'bbox': [1149, 499.989847715736, 13, 36], 'category_id': 6, 'area': 468.0, 'iscrowd': False, 'ignore': False, 'track': 14}]

 8、obj

9、self.train_loader

 10、self.prefetcher

 11、inps  targets

12、 expanded_strides

13、gt_matched_classes

 14、pred_ious_this_matching

 15、matched_gt_inds

16、dynamic_ks

 17、fg_mask

 三、一些入口

1、训练的入口

train.py -- 117

trainer.train()

会跳转到 exps/train_utils/double_trainer.py 中的 Trainer 类中 

2、YoloX model 建立

 exps/train_utils/double_trainer.py --- 139

model = self.exp.get_model()

3、 模型训练权重参数的加载

 exps/train_utils/double_trainer.py --- 149

model = self.resume_train(model)

  exps/train_utils/double_trainer.py --- 314

ckpt_file = self.args.ckpt  # '/root/data/zjx/Code-subject/StreamYOLO-main/yolox_s.pth'
ckpt = torch.load(ckpt_file, map_location=self.device)["model"]
model = load_ckpt(model, ckpt)

其debug详见 二中的3 

4、train_loader 建立

  exps/train_utils/double_trainer.py --- 153

self.train_loader = self.exp.get_data_loader(
            batch_size=self.args.batch_size,
            is_distributed=self.is_distributed,
            no_aug=self.no_aug,
            cache_img=self.args.cache,
        )

然后会跳转到  cfgs/m_s50_onex_dfp_tal_flip.py

5、数据送入模型,前向处理,得到输出

  exps/train_utils/double_trainer.py --- 96 始

具体为 

outputs = self.model(inps, targets)

6、输入图片的可视化

四、日志打印处

1、

exps/train_utils/double_trainer.py --- 134

2023-01-12 12:28:37 | INFO     | exps.train_utils.double_trainer:134 - args: Namespace(batch_size=4, cache=False, ckpt='/root/data/zjx/Code-subject/StreamYOLO-main/yolox_s.pth', devices=1, dist_backend='nccl', dist_url=None, exp_file='/root/data/zjx/Code-subject/StreamYOLO-main/cfgs/m_s50_onex_dfp_tal_flip.py', experiment_name='m_s50_onex_dfp_tal_flip', fp16=True, logger='tensorboard', machine_rank=0, name=None, num_machines=1, occupy=True, opts=[], resume=False, start_epoch=None)
2023-01-12 12:28:59 | INFO     | exps.train_utils.double_trainer:135 - exp value:
╒═══════════════════╤════════════════════════════╕
│ keys              │ values                     │
╞═══════════════════╪════════════════════════════╡
│ seed              │ None                       │
├───────────────────┼────────────────────────────┤
│ output_dir        │ '/data/output/stream_yolo' │
├───────────────────┼────────────────────────────┤
│ print_interval    │ 10                         │
├───────────────────┼────────────────────────────┤
│ eval_interval     │ 1                          │
├───────────────────┼────────────────────────────┤
│ num_classes       │ 8                          │
├───────────────────┼────────────────────────────┤
│ depth             │ 0.67                       │
├───────────────────┼────────────────────────────┤
│ width             │ 0.75                       │
├───────────────────┼────────────────────────────┤
│ act               │ 'silu'                     │
├───────────────────┼────────────────────────────┤
│ data_num_workers  │ 6                          │
├───────────────────┼────────────────────────────┤
│ input_size        │ (600, 960)                 │
├───────────────────┼────────────────────────────┤
│ multiscale_range  │ 5                          │
├───────────────────┼────────────────────────────┤
│ data_dir          │ None                       │
├───────────────────┼────────────────────────────┤
│ train_ann         │ 'train.json'               │
├───────────────────┼────────────────────────────┤
│ val_ann           │ 'val.json'                 │
├───────────────────┼────────────────────────────┤
│ test_ann          │ 'instances_test2017.json'  │
├───────────────────┼────────────────────────────┤
│ mosaic_prob       │ 1.0                        │
├───────────────────┼────────────────────────────┤
│ mixup_prob        │ 1.0                        │
├───────────────────┼────────────────────────────┤
│ hsv_prob          │ 1.0                        │
├───────────────────┼────────────────────────────┤
│ flip_prob         │ 0.5                        │
├───────────────────┼────────────────────────────┤
│ degrees           │ 10.0                       │
├───────────────────┼────────────────────────────┤
│ translate         │ 0.1                        │
├───────────────────┼────────────────────────────┤
│ mosaic_scale      │ (0.1, 2)                   │
├───────────────────┼────────────────────────────┤
│ enable_mixup      │ True                       │
├───────────────────┼────────────────────────────┤
│ mixup_scale       │ (0.5, 1.5)                 │
├───────────────────┼────────────────────────────┤
│ shear             │ 2.0                        │
├───────────────────┼────────────────────────────┤
│ warmup_epochs     │ 1                          │
├───────────────────┼────────────────────────────┤
│ max_epoch         │ 15                         │
├───────────────────┼────────────────────────────┤
│ warmup_lr         │ 0                          │
├───────────────────┼────────────────────────────┤
│ min_lr_ratio      │ 0.05                       │
├───────────────────┼────────────────────────────┤
│ basic_lr_per_img  │ 1.5625e-05                 │
├───────────────────┼────────────────────────────┤
│ scheduler         │ 'yoloxwarmcos'             │
├───────────────────┼────────────────────────────┤
│ no_aug_epochs     │ 15                         │
├───────────────────┼────────────────────────────┤
│ ema               │ True                       │
├───────────────────┼────────────────────────────┤
│ weight_decay      │ 0.0005                     │
├───────────────────┼────────────────────────────┤
│ momentum          │ 0.9                        │
├───────────────────┼────────────────────────────┤
│ save_history_ckpt │ True                       │
├───────────────────┼────────────────────────────┤
│ exp_name          │ 'm_s50_onex_dfp_tal_flip'  │
├───────────────────┼────────────────────────────┤
│ test_size         │ (600, 960)                 │
├───────────────────┼────────────────────────────┤
│ test_conf         │ 0.01                       │
├───────────────────┼────────────────────────────┤
│ nmsthre           │ 0.65                       │
├───────────────────┼────────────────────────────┤
│ random_size       │ (50, 70)                   │
╘═══════════════════╧════════════════════════════╛

2、

exps/train_utils/double_trainer.py --- 312

loading checkpoint for fine tuning

 3、

 exps/train_utils/double_trainer.py --- 315

多条 warning 日志

2023-01-13 12:14:36 | WARNING  | yolox.utils.checkpoint:26 - Shape of backbone.backbone.stem.conv.conv.weight in checkpoint is torch.Size([32, 12, 3, 3]), while shape of backbone.backbone.stem.conv.conv.weight in model is torch.Size([48, 12, 3, 3]).

4、

 exps/dataset/tal_flip_one_future_argoversedataset.py --- 36 

使用的库中的类 中打印的, 其来自 cfgs/m_s50_onex_dfp_tal_flip.py --- 67

 exps.dataset.tal_flip_one_future_argoversedataset:36 - loading annotations into memory...
 exps.dataset.tal_flip_one_future_argoversedataset:36 - Done (t=50.09s)
 pycocotools.coco:86 - creating index...
 pycocotools.coco:86 - index created!

5、

 exps/train_utils/double_trainer.py --- 159

exps.train_utils.double_trainer:159 - init prefetcher, this might take one minute or less...

6、

exps/train_utils/double_trainer.py --- 195

exps.train_utils.double_trainer:195 - Training start...

 以及模型结构

7、

exps/train_utils/double_trainer.py --- 207

exps.train_utils.double_trainer:207 - ---> start train epoch1
exps.train_utils.double_trainer:210 - --->No mosaic aug now!
exps.train_utils.double_trainer:212 - --->Add additional L1 loss now!

五、model网络结构

1、网络结构

模型从 预训练的 文件中 搭建。 

YOLOX(
  (backbone): DFPPAFPN(
    (backbone): CSPDarknet(
      (stem): Focus(
        (conv): BaseConv(
          (conv): Conv2d(12, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (dark2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark3): Sequential(
        (0): BaseConv(
          (conv): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (2): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (3): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (4): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (5): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark4): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (2): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (3): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (4): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (5): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark5): Sequential(
        (0): BaseConv(
          (conv): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): SPPBottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): ModuleList(
            (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
            (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
            (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
          )
          (conv2): BaseConv(
            (conv): Conv2d(1536, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (2): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
    )
    (lateral_conv0): BaseConv(
      (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_p4): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (1): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (reduce_conv1): BaseConv(
      (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_p3): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (1): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (bu_conv2): BaseConv(
      (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_n3): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (1): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (bu_conv1): BaseConv(
      (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_n4): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (1): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (jian2): BaseConv(
      (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (jian1): BaseConv(
      (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (jian0): BaseConv(
      (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
  )
  (head): TALHead(
    (cls_convs): ModuleList(
      (0): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (1): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
    (reg_convs): ModuleList(
      (0): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (1): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
    (cls_preds): ModuleList(
      (0): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))
    )
    (reg_preds): ModuleList(
      (0): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))
    )
    (obj_preds): ModuleList(
      (0): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))
    )
    (stems): ModuleList(
      (0): BaseConv(
        (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): BaseConv(
        (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (2): BaseConv(
        (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
    )
    (l1_loss): L1Loss()
    (bcewithlog_loss): BCEWithLogitsLoss()
    (iou_loss): IOUloss()
  )
)

2、exp中的内容

╒═══════════════════╤═════════════════════════════════════════════════════════════════════════════════════════════════════════╕
│ keys              │ values                                                                                                  │
╞═══════════════════╪═════════════════════════════════════════════════════════════════════════════════════════════════════════╡
│ seed              │ None                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ output_dir        │ '/data/output/stream_yolo'                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ print_interval    │ 10                                                                                                      │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ eval_interval     │ 1                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ num_classes       │ 8                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ depth             │ 0.67                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ width             │ 0.75                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ act               │ 'silu'                                                                                                  │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ data_num_workers  │ 6                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ input_size        │ (600, 960)                                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ multiscale_range  │ 5                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ data_dir          │ None                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ train_ann         │ 'train.json'                                                                                            │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ val_ann           │ 'val.json'                                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ test_ann          │ 'instances_test2017.json'                                                                               │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ mosaic_prob       │ 1.0                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ mixup_prob        │ 1.0                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ hsv_prob          │ 1.0                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ flip_prob         │ 0.5                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ degrees           │ 10.0                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ translate         │ 0.1                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ mosaic_scale      │ (0.1, 2)                                                                                                │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ enable_mixup      │ True                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ mixup_scale       │ (0.5, 1.5)                                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ shear             │ 2.0                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ warmup_epochs     │ 1                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ max_epoch         │ 15                                                                                                      │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ warmup_lr         │ 0                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ min_lr_ratio      │ 0.05                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ basic_lr_per_img  │ 1.5625e-05                                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ scheduler         │ 'yoloxwarmcos'                                                                                          │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ no_aug_epochs     │ 15                                                                                                      │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ ema               │ True                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ weight_decay      │ 0.0005                                                                                                  │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ momentum          │ 0.9                                                                                                     │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ save_history_ckpt │ True                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ exp_name          │ 'm_s50_onex_dfp_tal_flip'                                                                               │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ test_size         │ (600, 960)                                                                                              │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ test_conf         │ 0.01                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ nmsthre           │ 0.65                                                                                                    │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ random_size       │ (50, 70)                                                                                                │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ model             │ YOLOX(                                                                                                  │
│                   │   (backbone): DFPPAFPN(                                                                                 │
│                   │     (backbone): CSPDarknet(                                                                             │
│                   │       (stem): Focus(                                                                                    │
│                   │         (conv): BaseConv(                                                                               │
│                   │           (conv): Conv2d(12, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)         │
│                   │           (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)        │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (dark2): Sequential(                                                                              │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)         │
│                   │           (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)        │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): CSPLayer(                                                                                  │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)                       │
│                   │             (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)                       │
│                   │             (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv3): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                       │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (m): Sequential(                                                                              │
│                   │             (0): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (1): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(48, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(48, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (dark3): Sequential(                                                                              │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)        │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): CSPLayer(                                                                                  │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                      │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                      │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv3): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (m): Sequential(                                                                              │
│                   │             (0): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (1): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (2): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (3): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (4): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (5): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)   │
│                   │                 (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)  │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (dark4): Sequential(                                                                              │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): CSPLayer(                                                                                  │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv3): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (m): Sequential(                                                                              │
│                   │             (0): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (1): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (2): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (3): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (4): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (5): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (dark5): Sequential(                                                                              │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): SPPBottleneck(                                                                             │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (m): ModuleList(                                                                              │
│                   │             (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)             │
│                   │             (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)             │
│                   │             (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)            │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(1536, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)                    │
│                   │             (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │         (2): CSPLayer(                                                                                  │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv3): BaseConv(                                                                            │
│                   │             (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (m): Sequential(                                                                              │
│                   │             (0): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │             (1): Bottleneck(                                                                            │
│                   │               (conv1): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                 │
│                   │                 (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │               (conv2): BaseConv(                                                                        │
│                   │                 (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) │
│                   │                 (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True) │
│                   │                 (act): SiLU(inplace=True)                                                               │
│                   │               )                                                                                         │
│                   │             )                                                                                           │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (lateral_conv0): BaseConv(                                                                          │
│                   │       (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                           │
│                   │       (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (C3_p4): CSPLayer(                                                                                  │
│                   │       (conv1): BaseConv(                                                                                │
│                   │         (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv2): BaseConv(                                                                                │
│                   │         (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv3): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (m): Sequential(                                                                                  │
│                   │         (0): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │         (1): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (reduce_conv1): BaseConv(                                                                           │
│                   │       (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                           │
│                   │       (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (C3_p3): CSPLayer(                                                                                  │
│                   │       (conv1): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                          │
│                   │         (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)          │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv2): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                          │
│                   │         (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)          │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv3): BaseConv(                                                                                │
│                   │         (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (m): Sequential(                                                                                  │
│                   │         (0): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                       │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │         (1): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                       │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │             (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)      │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (bu_conv2): BaseConv(                                                                               │
│                   │       (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)           │
│                   │       (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (C3_n3): CSPLayer(                                                                                  │
│                   │       (conv1): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv2): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv3): BaseConv(                                                                                │
│                   │         (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (m): Sequential(                                                                                  │
│                   │         (0): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │         (1): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (bu_conv1): BaseConv(                                                                               │
│                   │       (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)           │
│                   │       (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (C3_n4): CSPLayer(                                                                                  │
│                   │       (conv1): BaseConv(                                                                                │
│                   │         (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv2): BaseConv(                                                                                │
│                   │         (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (conv3): BaseConv(                                                                                │
│                   │         (conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(768, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (m): Sequential(                                                                                  │
│                   │         (0): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │         (1): Bottleneck(                                                                                │
│                   │           (conv1): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │           (conv2): BaseConv(                                                                            │
│                   │             (conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)     │
│                   │             (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)     │
│                   │             (act): SiLU(inplace=True)                                                                   │
│                   │           )                                                                                             │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (jian2): BaseConv(                                                                                  │
│                   │       (conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)                            │
│                   │       (bn): BatchNorm2d(96, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)            │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (jian1): BaseConv(                                                                                  │
│                   │       (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                           │
│                   │       (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │     (jian0): BaseConv(                                                                                  │
│                   │       (conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)                           │
│                   │       (bn): BatchNorm2d(384, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)           │
│                   │       (act): SiLU(inplace=True)                                                                         │
│                   │     )                                                                                                   │
│                   │   )                                                                                                     │
│                   │   (head): TALHead(                                                                                      │
│                   │     (cls_convs): ModuleList(                                                                            │
│                   │       (0): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (1): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (2): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (reg_convs): ModuleList(                                                                            │
│                   │       (0): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (1): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │       (2): Sequential(                                                                                  │
│                   │         (0): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │         (1): BaseConv(                                                                                  │
│                   │           (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)       │
│                   │           (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)       │
│                   │           (act): SiLU(inplace=True)                                                                     │
│                   │         )                                                                                               │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (cls_preds): ModuleList(                                                                            │
│                   │       (0): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (1): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (2): Conv2d(192, 8, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │     )                                                                                                   │
│                   │     (reg_preds): ModuleList(                                                                            │
│                   │       (0): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (1): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (2): Conv2d(192, 4, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │     )                                                                                                   │
│                   │     (obj_preds): ModuleList(                                                                            │
│                   │       (0): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (1): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │       (2): Conv2d(192, 1, kernel_size=(1, 1), stride=(1, 1))                                            │
│                   │     )                                                                                                   │
│                   │     (stems): ModuleList(                                                                                │
│                   │       (0): BaseConv(                                                                                    │
│                   │         (conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (1): BaseConv(                                                                                    │
│                   │         (conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │       (2): BaseConv(                                                                                    │
│                   │         (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)                         │
│                   │         (bn): BatchNorm2d(192, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)         │
│                   │         (act): SiLU(inplace=True)                                                                       │
│                   │       )                                                                                                 │
│                   │     )                                                                                                   │
│                   │     (l1_loss): L1Loss()                                                                                 │
│                   │     (bcewithlog_loss): BCEWithLogitsLoss()                                                              │
│                   │     (iou_loss): IOUloss()                                                                               │
│                   │   )                                                                                                     │
│                   │ )                                                                                                       │
├───────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────┤
│ optimizer         │ SGD (                                                                                                   │
│                   │ Parameter Group 0                                                                                       │
│                   │     dampening: 0                                                                                        │
│                   │     lr: 0                                                                                               │
│                   │     momentum: 0.9                                                                                       │
│                   │     nesterov: True                                                                                      │
│                   │     weight_decay: 0                                                                                     │
│                   │                                                                                                         │
│                   │ Parameter Group 1                                                                                       │
│                   │     dampening: 0                                                                                        │
│                   │     lr: 0                                                                                               │
│                   │     momentum: 0.9                                                                                       │
│                   │     nesterov: True                                                                                      │
│                   │     weight_decay: 0.0005                                                                                │
│                   │                                                                                                         │
│                   │ Parameter Group 2                                                                                       │
│                   │     dampening: 0                                                                                        │
│                   │     lr: 0                                                                                               │
│                   │     momentum: 0.9                                                                                       │
│                   │     nesterov: True                                                                                      │
│                   │     weight_decay: 0                                                                                     │
│                   │ )                                                                                                       │
╘═══════════════════╧═════════════════════════════════════════════════════════════════════════════════════════════════════════╛

六、train 的主要过程

训练过程 全部都在  exps/train_utils/double_trainer.py 中的 Trainer 类中 完成,

1、self.before_train()

包括建立 dataloader,optimizer,加载模型以及pytorch训练加速等等,训练前的一些准备

 2、self.train_in_epoch

1)  self.before_epoch

打印了一些关于 epoch 信息的日志,还进行了一些其它的配置,包括 train_loader 的属性和model的某个 head 的是否应用

2) self.train_in_iter

开始的 self.before_iter() 没做什么,主要就是 self.train_one_iter()。执行下面语句时

outputs = self.model(inps, targets)

会跳转到 exps/model/yolox.py 中的 YOLOX 类中,执行前向传播 forward

当执行 backbone 时,

 fpn_outs = self.backbone(x, buffer=buffer, mode='off_pipe')

时,会跳转到 exps/model/dfp_pafpn.py 中的 DFFAFPN 类中 的 forward 函数中,最终的流程定义在该类中的 off_forward 函数中,其中前向传播的 pipeline 如下所示

self.backbone -----> CSPDarknet , 这里面包括 stem,dark2,dark3,dark4,dark5

其它的见网络结构图

主要流程如下图所示

 最终得到的输出为

outputs = (pan_out2, pan_out1, pan_out0)

 其包括fpn三层的输出,接下来会送到head得到网络的预测然后进行损失函数的计算。

当执行 self.head时

loss, iou_loss, conf_loss, cls_loss, l1_loss, num_fg = self.head(
                    fpn_outs, targets, x
                )

会跳转到  exps\model\tal_head.py 文件中 的 TALhead 中的forward函数中,首先会按 layer层(3层) 来分层进行处理,得到预测的输出,每层都会把用于 ref,cls,obj(类似中心质量分支) cat到一起

output = torch.cat([reg_output, obj_output, cls_output], 1)

然后根据这个去建立网格坐标,接下来去计算 loss, 在该类的 get_loss 函数中

对于dataloader 中的源标签 targets 其shape为 

{tuple:2} 0=Tensor:(4,120,5) 1=Tensor:(4,120,5)

这里的 tuple为2 是因为 计算loss需要当前帧t和下一帧t+1 图片的ground truth,并且其中的 0 为下一帧图片相关的 gt。  通道数 5 寓意为 0通道为类别标签, 1~4 通道为 bbox 的 label。 至于120 不知道是什么,没搞懂为什么是120。

然后在 self.get_assignments 函数中去 确定正样本。

fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
            gt_bboxes_per_image,
            expanded_strides,
            x_shifts,
            y_shifts,
            total_num_anchors,
            num_gt,
        )  # fg_mask 是bool型,确定哪里可能是正样本的, is_in_boxes_and_center 也是bool型,它需要同时满足两种标签 bbox 设立

根据 设立的网格坐标 以及 label 确定 正样本的区域得到 掩码mask, 得到的预测只需要拿出正样本区域 的 数值来计算loss。同理标签也是拿出mask部分。

接下来会计算一个 cost 

cost = (
            pair_wise_cls_loss
            + 3.0 * pair_wise_ious_loss
            + 100000.0 * (~is_in_boxes_and_center)
        ) 

这个 cost 算是一个 过渡, 它包含了 间的分类损失和 iou损失,用它来就是为了筛选确定正样本的位置。 self.dynamic_k_matching 函数中用到了它。这个函数的处理过程如下所示:

1)对于每个目标 计算的 iou 拿出前10个最大的,  得到topk_ious;

2)对这些iou进行筛选,保留值越接近1越好的,最少保留1个,这里确定的是保留的个数,得到  dynamic_ks ;

3)对计算的 cost ,根据每个目标保留的 iou 个数  dynamic_ks[gt_idx] ,得到前  dynamic_ks[gt_idx]   个最大值的索引  pos_idx。按 cost的第二维度位置;

4)根据上面的索引,使 matching_matrix 对应的位置值为1,其它位置为0,这就是一个掩码mask;

5)计算每个 格子(横向的第二维度,即得分图的每个位置)包含的目标数量anchor_matching_gt ,若数量大于1,保留 cost 值最小的 目标;

6)对 matching_matrix (此时每个格子只包含一个目标)按第一维度加和,取值大于1的位置为 True,也就是 得到 正样本 位置的掩码 fg_mask_inboxes ;

7)根据 掩码 fg_mask_inboxes 计算 正样本的 个数 num_fg ;

8)matched_gt_inds  每个格子的目标索引,第一维度的

9) gt_matched_classes 每个格子对应的 类别标签

10)pred_ious_this_matching  为最终保留的 正样本的iou

最终得到 self.get_assignments 函数的返回值。然后确定标签

cls_target = F.one_hot(
                    gt_matched_classes.to(torch.int64), self.num_classes
                ) * pred_ious_this_matching.unsqueeze(-1)  # Tensor:(24,8)  转 one_hot 编码,类别标签
obj_target = fg_mask.unsqueeze(-1)  # Tensor:(11850,1)  obj 标签
reg_target = gt_bboxes_per_image[matched_gt_inds]  # Tensor:(24,4)  回归标签

而且还对网络原始的回归预测输出 利用了 l1 loss,设立了 l1 回归损失标签

                if self.use_l1:  # True  还用了 l1 loss, 对网络的原输出与 标签 计算损失
                    l1_target = self.get_l1_target(
                        outputs.new_zeros((num_fg_img, 4)),
                        gt_bboxes_per_image[matched_gt_inds],
                        expanded_strides[0][fg_mask],
                        x_shifts=x_shifts[0][fg_mask],
                        y_shifts=y_shifts[0][fg_mask],
                    )  # Tensor:(23,4)  计算l1损失的 回归标签

回归损失的计算如下:

先计算 权重这里权重的计算与网络的预测输出没有任何关联,只与 T帧 和 T+1帧图片的g t以及 正样本的数量有关。

 回归损失

loss_iou = (
            iou_loss_weight * self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets)
        ).sum() / num_fg

obj损失(类似中心质量分数)

loss_obj = (
            self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets)
        ).sum() / num_fg

分类损失

loss_cls = (
            self.bcewithlog_loss(
                cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets
            )
        ).sum() / num_fg

额外的 l1损失 

        if self.use_l1:  # True
            loss_l1 = (
                l1_weight * self.l1_loss(origin_preds.view(-1, 4)[fg_masks], l1_targets)
            ).sum() / num_fg

这里得到的损失都是一个数值

最后的总损失

loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1

然后依次返回到

# yolox.py --- 36
loss, iou_loss, conf_loss, cls_loss, l1_loss, num_fg = self.head(
                    fpn_outs, targets, x
                )
# double_trainer.py --- 124
 outputs = self.model(inps, targets)

然后进行一些列的更新操作,包括梯度清零,学习率更新等等。至此 self.train_one_iter() 结束。

 self.after_iter

满足训练轮数 对 输入数据 size 进行变化。至此重复执行 train_in_iter

3)self.after_epoch

保存当前epoch的模型

3、self.after_train

打印日志

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/378944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt——拖拽

Qt的拖拽可以按字面意思分为拖和拽两部分。一般来说我们常见的拖拽分别由两个程序合作完成。例如我们经常把桌面的文件拖拽进其他目录&#xff1a; ​ 编辑拖拽方可以发起多个拖拽类型&#xff08;复制、链接、移动等&#xff09;&#xff0c;接收方可以选择接受其中某个类型或…

《分布式技术原理与算法解析》学习笔记Day25

负载均衡 负载均衡是分布式可靠性中非常关键的一个问题&#xff0c;它在一定程度上反映了分布式系统对业务处理的能力。 什么是负载均衡&#xff1f; 负载均衡可以分为两种&#xff1a; 请求负载均衡&#xff0c;即将用户的请求均衡的分发到不同的服务器进行处理。数据负载…

扬帆优配|弹性增强 双向波动明显 人民币汇率走势将回归基本面

离岸人民币对美元汇率走势图 美联储加息预期起波澜&#xff0c;人民币汇率再临“7”关口。 到2月27日16时30分&#xff0c;在岸人民币对美元汇率收盘报6.9645&#xff1b;离岸人民币对美元汇率盘中最低触及6.9896&#xff0c;险些失守6.99关口。 人民币汇率走贬的一起&#x…

Odoo | Webserivce | 5分钟学会【JSONRPC】接口开发 - 换USERID(进阶)

文章目录JSONRPC - 换取USERID简述换取USERID1. 代码示例2. 换取结果JSONRPC - 换取USERID 简述 从Odoo JSONRPC 接口入门篇&#xff0c;可以发现我们直接传入了USERID&#xff0c;这只是为了方便快速测试。 其实按照常规流程&#xff0c;应该通过【用户名USERNAME】和【用户…

【LeetCode】No.237. 删除链表中的节点 – Java Version

题目链接&#xff1a;https://leetcode.cn/problems/delete-node-in-a-linked-list/ 1. 题目介绍&#xff08;237. 删除链表中的节点&#xff09; 有一个单链表的 head&#xff0c;我们想删除它其中的一个节点 node。 给你一个需要删除的节点 node 。你将 无法访问 第一个节点…

consul注册中心服务All service checks failing及解决

文章目录consul注册中心服务All service checks failing问题一&#xff1a;能注册&#xff0c;有报错&#xff0c;中间件不可用问题二&#xff1a;能注册&#xff0c;没报错&#xff0c;通不过检查问题三&#xff1a;同一个服务&#xff0c;注册了很多次consul注册中心服务All …

springBoot内容响应和内容协商原理

spring提供了15种默认返回值处理器&#xff1a; 一、处理返回值&#xff1a; this.returnValueHandlers.handleReturnValue(returnValue, getReturnValueType(returnValue), mavContainer, webRequest)二、获取对应的返回值处理器&#xff1a; private HandlerMethodReturnVa…

《第一行代码》 第九章:使用网络技术

一&#xff0c;WebView的用法 活动布局的代码&#xff1a; <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"><WebViewandroid:id&…

九龙证券|消费电子遇冷后转向动力储能赛道,但毛利率仍弱于同行

近年来&#xff0c;新能源的热度居高不下&#xff0c;顶着赛道光环&#xff0c;2月17日证监会发表信息显现&#xff0c;广州明美新能源股份有限公司&#xff08;简称明美新能&#xff09;首发上市取得通过。公司方案挂牌深交所创业板&#xff0c;并方案募资4.50亿元&#xff0c…

【RocketMQ】RocketMQ 5.0版本任意时刻延迟消息的实现原理浅析

文章目录意外发现设计方案时间轮定时消息存储具体实现流程图流程步骤意外发现 无意间从官方的最新的客户端代码中看到下面的Example&#xff1a; 感兴趣的可以看看这个介绍&#xff1a;https://rocketmq.apache.org/docs/featureBehavior/02delaymessage 生产者&#xff1a;…

【ES】Elasticsearch之数据类型

文章目录1、Mapping1.1 Mapping的作用1.2 Dynamic Mapping1.3 字段控制参数1.3.1 index1.3.2 Index Options1.3.3 null_value1.3.4 copy_to2、数据类型2.1 核心数据类型2.1.1 字符串类型2.1.2 数字类型2.1.3 日期类型2.1.3.1 date2.1.3.2 date_nanos2.1.4 布尔类型2.1.5 二进制…

java中使用protobuf总结

基本没怎么接触过java编程&#xff0c;别的团队发过来一个用java编写的存储pb的文件&#xff0c;让拆分和解析&#xff0c;硬着头皮做一下&#xff0c;在此将步骤做个记录&#xff1a;下载安装protobufhttps://github.com/protocolbuffers/protobuf/tags?afterv3.6.1.2编译pro…

Python大数据培训班特色优势及工作方向

Python大数据培训班有多个大数据培训班类型&#xff0c;同时也包括训练营、学徒班、就业班等。 具体班型&#xff1a; 大数据挖掘与人工智能&#xff08;大数据分析&#xff09;学徒班、大数据应用开发学徒班 大数据挖掘与人工智能&#xff08;大数据分析&…

网络安全从入门到精通:30天速成教程到底有多狠?你能坚持下来么?

毫无疑问&#xff0c;网络安全是当下最具潜力的编程方向之一。对于许多未曾涉足计算机编程的领域「小白」来说&#xff0c;深入地掌握网络安全看似是一件十分困难的事。至于一个月能不能学会网络安全&#xff0c;这个要看个人&#xff0c;对于时间管理不是很高的&#xff0c;肯…

DDOS攻击和CC攻击分别是什么?

CC攻击其实是DDOS攻击的一种。CC攻击的前身CC攻击的前身是一个名为Fatboy攻击程序&#xff0c;而之所以后来人们会成为CC&#xff0c;是因为DDOS攻击发展的初期阶段&#xff0c;绝大部分DDOS攻击都能被业界熟知的“黑洞”&#xff08;collapsar&#xff0c;一种安全防护产品&am…

生成和查看dump文件

在日常开发中&#xff0c;即使代码写得有多谨慎&#xff0c;免不了还是会发生各种意外的事件&#xff0c;比如服务器内存突然飙高&#xff0c;又或者发生内存溢出(OOM)。当发生这种情况时&#xff0c;我们怎么去排查&#xff0c;怎么去分析原因呢&#xff1f; 1. 什么是dump文…

云服务器迁移 (全网最省钱最详细攻略)

0x00 背景服务器续费比较贵&#xff0c;由于旧的云服务器用的时间比较长&#xff0c;上面部署的应用&#xff0c;环境复杂、数据多&#xff0c;在新的服务器部署比较麻烦&#xff0c;所以想到把服务器环境制作成镜像。新服务器的选择上&#xff0c;我这里选择的天翼云服务器&am…

IGKBoard(imx6ull)-PWM编程蜂鸣器编程控制

文章目录1- PWM介绍2- PWM使能&#xff08;1&#xff09;添加配置&#xff08;2&#xff09;export、unexport与npwm属性文件&#xff08;3&#xff09;duty_cycle、enable和period属性文件3- PWM测试编程&#xff08;1&#xff09;PWM8管脚连接&#xff08;2&#xff09;流程介…

京东JDBook笔记本怎么安装Win10系统使用?

京东JDBook笔记本怎么安装Win10系统使用&#xff1f;有用户使用的京东JDBook笔记本电脑系统是Win7系统的&#xff0c;最近想要去将系统升级到Win10来使用。那么如何将Win7的系统重装Win10呢&#xff1f;以下为大家带来详细的操作步骤图文教程。 准备工作&#xff1a; 1、U盘一个…

视频和视频帧:FFMPEG CPU解码API介绍

写在前面本文将介绍的如何用FFMPEG API做视频解码。视频解码&#xff0c;是将压缩后的视频&#xff08;压缩格式如H264&#xff09;通过对应解码算法还原为YUV视频流的过程&#xff1b;在计算机看来&#xff0c;首先输入一段01串&#xff08;压缩的视频&#xff09;&#xff0c…