【操作系统】进程管理

news2024/9/22 11:26:34

进程与线程

1. 进程

进程是资源分配的基本单位

进程控制块 (Process Control Block, PCB) 描述进程的基本信息和运行状态,所谓的创建进程和撤销进程,都是指对 PCB 的操作。

下图显示了 4 个程序创建了 4 个进程,这 4 个进程可以并发地执行。
在这里插入图片描述

2. 线程

线程是独立调度的基本单位。

一个进程中可以有多个线程,它们共享进程资源。

QQ 和浏览器是两个进程,浏览器进程里面有很多线程,例如 HTTP 请求线程、事件响应线程、渲染线程等等,线程的并发执行使得在浏览器中点击一个新链接从而发起 HTTP 请求时,浏览器还可以响应用户的其它事件。
在这里插入图片描述

3. 区别

  • 拥有资源

    进程是资源分配的基本单位,但是线程不拥有资源,线程可以访问隶属进程的资源。

  • 调度

    线程是独立调度的基本单位,在同一进程中,线程的切换不会引起进程切换,从一个进程中的线程切换到另一个进程中的线程时,会引起进程切换。

  • 系统开销

    由于创建或撤销进程时,系统都要为之分配或回收资源,如内存空间、I/O 设备等,所付出的开销远大于创建或撤销线程时的开销。类似地,在进行进程切换时,涉及当前执行进程 CPU 环境的保存及新调度进程 CPU 环境的设置,而线程切换时只需保存和设置少量寄存器内容,开销很小。

  • 通信方面

    线程间可以通过直接读写同一进程中的数据进行通信,但是进程通信需要借助 IPC。

进程状态的切换

在这里插入图片描述

  • 就绪状态(ready):等待被调度
  • 运行状态(running)
  • 阻塞状态(waiting):等待资源

应该注意以下内容:

  • 只有就绪态和运行态可以相互转换,其它的都是单向转换。就绪状态的进程通过调度算法从而获得 CPU 时间,转为运行状态;而运行状态的进程,在分配给它的 CPU 时间片用完之后就会转为就绪状态,等待下一次调度。
  • 阻塞状态是缺少需要的资源从而由运行状态转换而来,但是该资源不包括 CPU 时间,缺少 CPU 时间会从运行态转换为就绪态。

进程调度算法

不同环境的调度算法目标不同,因此需要针对不同环境来讨论调度算法。

1. 批处理系统

批处理系统没有太多的用户操作,在该系统中,调度算法目标是保证吞吐量和周转时间(从提交到终止的时间)。

  • 先来先服务 first-come first-serverd(FCFS)

    非抢占式的调度算法,按照请求的顺序进行调度。

    有利于长作业,但不利于短作业,因为短作业必须一直等待前面的长作业执行完毕才能执行,而长作业又需要执行很长时间,造成了短作业等待时间过长。

  • 短作业优先 shortest job first(SJF)

    非抢占式的调度算法,按估计运行时间最短的顺序进行调度。

    长作业有可能会饿死,处于一直等待短作业执行完毕的状态。因为如果一直有短作业到来,那么长作业永远得不到调度。

  • 最短剩余时间优先 shortest remaining time next(SRTN)

    最短作业优先的抢占式版本,按剩余运行时间的顺序进行调度。 当一个新的作业到达时,其整个运行时间与当前进程的剩余时间作比较。如果新的进程需要的时间更少,则挂起当前进程,运行新的进程。否则新的进程等待

2. 交互式系统

交互式系统有大量的用户交互操作,在该系统中调度算法的目标是快速地进行响应

  • 时间片轮转

    将所有就绪进程按 FCFS 的原则排成一个队列,每次调度时,把 CPU 时间分配给队首进程,该进程可以执行一个时间片。当时间片用完时,由计时器发出时钟中断,调度程序便停止该进程的执行,并将它送往就绪队列的末尾,同时继续把 CPU 时间分配给队首的进程。

    时间片轮转算法的效率和时间片的大小有很大关系

    因为进程切换都要保存进程的信息并且载入新进程的信息,如果时间片太小,会导致进程切换得太频繁,在进程切换上就会花过多时间。
    而如果时间片过长,那么实时性就不能得到保证。
    在这里插入图片描述

  • 优先级调度

    为每个进程分配一个优先级,按优先级进行调度。

    为了防止低优先级的进程永远等不到调度,可以随着时间的推移增加等待进程的优先级

  • 多级反馈队列

    一个进程需要执行 100 个时间片,如果采用时间片轮转调度算法,那么需要交换 100 次。

    多级队列是为这种需要连续执行多个时间片的进程考虑,它设置了多个队列,每个队列时间片大小都不同,例如 1,2,4,8,…。进程在第一个队列没执行完,就会被移到下一个队列。这种方式下,之前的进程只需要交换 7 次。

    每个队列优先权也不同,最上面的优先权最高。因此只有上一个队列没有进程在排队,才能调度当前队列上的进程。

    可以将这种调度算法看成是时间片轮转调度算法和优先级调度算法的结合。
    在这里插入图片描述

3. 实时系统

实时系统要求一个请求在一个确定时间内得到响应。

分为硬实时和软实时,前者必须满足绝对的截止时间,后者可以容忍一定的超时。

进程同步

1. 临界区

对临界资源进行访问的那段代码称为临界区。

为了互斥访问临界资源,每个进程在进入临界区之前,需要先进行检查。

// entry section
// critical section;
// exit section

2. 同步与互斥

  • 同步:多个进程因为合作产生的直接制约关系,使得进程有一定的先后执行关系。
  • 互斥:多个进程在同一时刻只有一个进程能进入临界区。

3. 信号量

信号量(Semaphore)是一个整型变量,可以对其执行 down 和 up 操作,也就是常见的 P 和 V 操作。

down : 如果信号量大于 0 ,执行 -1 操作;如果信号量等于 0,进程睡眠,等待信号量大于 0;
up :对信号量执行 +1 操作,唤醒睡眠的进程让其完成 down 操作。
down 和 up 操作需要被设计成原语,不可分割,通常的做法是在执行这些操作的时候屏蔽中断。

如果信号量的取值只能为 0 或者 1,那么就成为了 互斥量(Mutex) ,0 表示临界区已经加锁,1 表示临界区解锁。

4. 管程

使用信号量机制实现的生产者消费者问题需要客户端代码做很多控制,而管程把控制的代码独立出来,不仅不容易出错,也使得客户端代码调用更容易

管程有一个重要特性:在一个时刻只能有一个进程使用管程。进程在无法继续执行的时候不能一直占用管程,否则其它进程永远不能使用管程。

管程引入了 条件变量 以及相关的操作:wait() 和 signal() 来实现同步操作。对条件变量执行 wait() 操作会导致调用进程阻塞,把管程让出来给另一个进程持有。signal() 操作用于唤醒被阻塞的进程。

进程通信

进程同步与进程通信很容易混淆,它们的区别在于:

  • 进程同步:控制多个进程按一定顺序执行;
  • 进程通信:进程间传输信息。

进程通信是一种手段,而进程同步是一种目的。也可以说,为了能够达到进程同步的目的,需要让进程进行通信,传输一些进程同步所需要的信息。

1. 管道

管道是通过调用 pipe 函数创建的,fd[0] 用于读,fd[1] 用于写。

#include <unistd.h>
int pipe(int fd[2]);

它具有以下限制:

  • 只支持半双工通信(单向交替传输);
  • 只能在父子进程或者兄弟进程中使用

在这里插入图片描述

2. 命名管道

去除了管道只能在父子进程中使用的限制

#include <sys/stat.h>
int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);

FIFO 常用于客户-服务器应用程序中,FIFO 用作汇聚点,在客户进程和服务器进程之间传递数据
在这里插入图片描述

3. 消息队列

相比于 FIFO,消息队列具有以下优点:

  • 消息队列可以独立于读写进程存在,从而避免了 FIFO 中同步管道的打开和关闭时可能产生的困难;
  • 避免了 FIFO 的同步阻塞问题,不需要进程自己提供同步方法;
  • 读进程可以根据消息类型有选择地接收消息,而不像 FIFO 那样只能默认地接收。

4. 信号量

它是一个计数器,用于为多个进程提供对共享数据对象的访问

5. 共享存储

允许多个进程共享一个给定的存储区。因为数据不需要在进程之间复制,所以这是最快的一种 IPC。

需要使用信号量用来同步对共享存储的访问。

多个进程可以将同一个文件映射到它们的地址空间从而实现共享内存。另外 XSI 共享内存不是使用文件,而是使用内存的匿名段

6. 套接字

与其它通信机制不同的是,它可用于不同机器间的进程通信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/377545.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实战|掌握Linux内存监视:free命令详解与使用技巧

文章目录前言一. free命令介绍二. 语法格式及常用选项三. 参考案例3.1 查看free相关的信息3.2 以MB的形式显示内存的使用情况3.3 以总和的形式显示内存的使用情况3.4 周期性的查询内存的使用情况3.5 以更人性化的形式来查看内存的结果输出四. free在脚本中的应用总结前言 大家…

LAMP项目部署实战2

部署Discuz!论坛 一、Discuz&#xff01;论坛概述&#xff1a; 1&#xff09;Discuz&#xff01;论坛是基于phpmysql进行开发的一套开源的论坛系统。 2&#xff09;下载源代码&#xff1a; 下载地址&#xff1a;码云DiscuzX: Discuz! X 官方 Git&#xff0c;简体中文 UTF8 版…

2023年,35岁测试工程师只能被“优化裁员”吗?肯定不是····

国内的互联网行业发展较快&#xff0c;所以造成了技术研发类员工工作强度比较大&#xff0c;同时技术的快速更新又需要员工不断的学习新的技术。因此淘汰率也比较高&#xff0c;超过35岁的基层研发类员工&#xff0c;往往因为家庭原因、身体原因&#xff0c;比较难以跟得上工作…

mongo数据备份

目录1. mongo单机安装2. mongo(replica set)部署3. mongodump 与 mongorestore工具使用4.rsync工具使用服务端配置客户端配置客户端推送与拉取文件5. 完整mongo全量备份脚本恢复全量备份数据6. 完整mongo增量备份脚本(基于oplog)恢复增量备份数据7.备份策略1. mongo单机安装 m…

高数:极限的定义

目录 极限的定义&#xff1a; 数列极限的几何意义&#xff1a; 由极限的定义得出的极限的两个结论&#xff1a; ​编辑 极限的第三个结论&#xff1a; 例题 方法1&#xff1a; ​编辑 方法2&#xff1a; ​编辑 方法3&#xff1a; ​编辑 极限的定义&#xff1a; 如何理…

JDK8常用新特性的原理与代码演示

Lambda Lambda 表达式&#xff0c;也可称为闭包&#xff0c;Lambda 允许把函数作为一个方法的参数。 格式 (参数列表) -> {代码块} (parameters) -> expression 或 (parameters) ->{ statements; }前置条件 lambda表达式是一段执行某种功能的代码块&#xff0c;需要…

数据结构与算法——4时间复杂度分析2(常见的大O阶)

这篇文章是时间复杂度分析的第二篇。在前一篇文章中&#xff0c;我们从0推导出了为什么要用时间复杂度&#xff0c;时间复杂度如何分析以及时间复杂度的表示三部分内容。这篇文章&#xff0c;是对一些常用的时间复杂度进行一个总结&#xff0c;相当于是一个小结论 1.常见的大O…

ESFP型人格的特征,ESFP型人格的优势和劣势分析

ESFP型人格的特征ESFP&#xff08;表演者型人格&#xff09;是人群中的开心果。他们外向&#xff0c;友善&#xff0c;包容&#xff0c;有他们在的地方总是充满着活泼的氛围。ESFP对于新的朋友&#xff0c;新的环境适应良好&#xff0c;他们是完完全全的社交动物&#xff0c;对…

【数据库原理 | MySQL】一文打通 DDL语句

&#x1f935;‍♂️ 个人主页: 计算机魔术师 &#x1f468;‍&#x1f4bb; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 书接上文介绍了数据库的前世今生&#xff0c;本文讲解SQL语句中的DDL语句 文章目录二、SQL2.1 SQL通用语法2.2 SQL的分类三、 …

I.MX6ULL_Linux_系统篇(19) kernel编译及Makefile分析

Linux 内核 Linux 由 Linux 基金会管理与发布&#xff0c; Linux 官网为 https://www.kernel.org&#xff0c;所以你想获取最新的Linux 版本就可以在这个网站上下载&#xff0c;网站界面如图所示&#xff1a; 从图中可以看出最新的稳定版 Linux 已经到了 6.2&#xff0c;NXP …

Python常用标准库-sys库一文详解

目录 前言 一、Sys库概述 二、Sys查看版本信息 1.sys.version获取Python版本信息 2.sys.api_version获取解释器中C的API版本 3.sys.getwindowsversion系统功能版本 4.sys.hexversion()获取Python解释器的版本值 5.sys.implementation获取当前正在运行的Python解释器的实现…

Redis源码---如何实现一个性能优异的Hash表

目录 前言 Redis 如何实现链式哈希&#xff1f; 什么是哈希冲突&#xff1f; 链式哈希如何设计与实现&#xff1f; Redis 如何实现 rehash&#xff1f; 什么时候触发 rehash&#xff1f; rehash 扩容扩多大&#xff1f; 渐进式 rehash 如何实现&#xff1f; 前言 Hash …

数据处理 |遍历所有文件夹及子目录文件夹方法总结与实例代码详解

深度学习中不可避免的数据预处理~1. glob.glob()方法 2. pathlib中的Path方法3. os.walk()方法1. glob.glob()方法 语法glob.glob(pathname)&#xff08;多指定文件类型&#xff0c;查找jpg,png,txt,json等&#xff09;缺点&#xff1a;查找文件较慢2. 路径操作库pathlib中的Pa…

【计算机三级网络技术】 第四篇 路由设计技术基础

文章目录一、分组转发二、路由选择1.理想的路由算法的基本特征2.路由算法的度量标准3.路由算法分类&#xff1a;4.IP路由选择与路由汇聚(重点)三、自治系统与Internet的路由选择协议1.自治系统2.路由选择协议的分类四、内部网关协议1.RIP的基本概念2.RIP的原理3.RIP的运行过程五…

Android Lmkd 低内存终止守护程序

一、低内存终止守护程序 Android 低内存终止守护程序 (lmkd) 进程可监控运行中的 Android 系统的内存状态&#xff0c;并通过终止最不必要的进程来应对内存压力大的问题&#xff0c;使系统以可接受的性能水平运行。 所有应用进程都是从zygote孵化出来的&#xff0c;记录在AMS…

Android问题笔记 - 打开Android Studio先弹出项目选择框

专栏分享点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例 &#x1f449;关于作者 众所周知&#xff0c;人生是一个漫长的流程&#xff0c;不断克服困难&#xff0c;不断…

leetcode 427. Construct Quad Tree(构建四叉树)

刚看到题的时候是懵的&#xff0c;这也太长了。到底是要表达什么呢。 不妨把这个矩阵看成一个正方形的图片&#xff0c;想象你在处理图片&#xff0c;从整体逐步到局部。 刚开始看一整张图片&#xff0c;如果是全0或全1&#xff0c;这个就是叶子节点&#xff0c;怎么表达叶子节…

网络货运平台“降本提质引流增值”秘籍是什么?

2月24日&#xff0c;2022&#xff08;第五届&#xff09;中国网络货运平台年会在厦门举行&#xff0c;数据宝作为中物联副会长单位受邀参加峰会&#xff0c;数据宝轮值CEO肖斌发表题为“网络货运平台数字化创新应用实践分享”的主题分享。 据交通运输部统计&#xff0c;截止到2…

某建筑设计研究院“综合布线管理软件”应用实践

某建筑设计研究院有限公司&#xff08;简称“某院”&#xff09;隶属于国务院国资委直属的大型骨干科技型中央企业。“某院”前身为中央直属设计公司&#xff0c;创建于1952年。成立近70年来&#xff0c;始终秉承优良传统&#xff0c;致力于推进国内勘察设计产业的创新发展&…

CASENet中edge GT是如何产生的

1&#xff1a;首先下载cityscape数据集&#xff0c;包含两个大文件夹&#xff0c;具体的数据集介绍参考此链接。cityscape数据集解析 看一下gtFine子文件夹&#xff0c;另一个也是同理&#xff1a; 2&#xff1a;将下载好的数据集放到data_orig中&#xff0c;还有一个文件…