正演(1): 二维声波正演模拟程序(中心差分)Python实现

news2024/11/18 9:33:16

目录

1、原理: 

1)二维声波波动方程:

​编辑

2)收敛条件(不是很明白)

3)雷克子波

4)二维空间衰减函数

 5)边界吸收条件 (不是很明白。。)

 2、编程实现

1)参数设置:

2)雷克子波及二维空间衰减函数

3)边界吸收条件

4)波动方程,迭代公式:

5)全部代码如下:

3、基于matlab的二维波动方程实现 


波动方程数值解是波动方程正演、逆时偏移和全波形反演的核心技术之一。本文采用二阶有限差分对波动方程进行了离散,进而实现了对波动方程的数值求解,模拟出其在介质中的传播过程。

NumPy 通常与 SciPy(Scientific Python)和 Matplotlib(绘图库)一起使用, 这种组合广泛用于替代 MatLab,是一个强大的科学计算环境,有助于我们通过 Python 学习数据科学或者机器学习。

SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。

Matplotlib 是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。 

本文代码部分才用了 NumPy和Matplotlib包。

1、原理: 

1)二维声波波动方程:

其中u 为声压,f 为震源中心声压,x/z 为x/z 方向的采样点,t 为时间,v 为速度。

利用泰勒公式对进行展开得到:

在这里插入图片描述


两式相减得:

在这里插入图片描述


则有:

在这里插入图片描述

近似得二阶差分算子:

在这里插入图片描述

利用二阶中心差分算子对二阶导数进行离散:

在这里插入图片描述

将上式代入声波方程得到二阶中心差分格式:

在这里插入图片描述

在这里插入图片描述

 其空间和时间差分格式示意图如下图所示:

在这里插入图片描述                                          在这里插入图片描述

2)收敛条件(不是很明白)

在这里插入图片描述

3)雷克子波

雷克子波是地震子波中的一种。由震源激发、经地下传播并被人们在地面或井中接收到的地震波通常是一个短的脉冲振动,称该振动为振动子波, 如下图所示。

公式为: f(t)=(1-2*(pi*f*t)^2)*exp(-(pi*f*t)^2) ,其中t 为时间,f 为主频。

4)二维空间衰减函数

震源中心为1,不衰减,距离中心越远,衰减程度越大。

h_x_z =  np.zeros((Nx+1,Nz+1))  #np.exp(-0.25 * ((x - Nx//2)**2 + (z - Nz//2)**2))  二维空间衰减函数
h_x_z[Nx//2,Nz//2] = 1   # 在Nx//2,Nz//2处激发
h_x_z =  np.exp(-alpha ** 2 * ((x - Nx//2)**2 + (z - Nz//2)**2))  # 二维空间衰减函数
 

下图显示的是h_x_z[150] 的曲线,整个的二维空间衰减系数h_x_z,以[150,150] 为中心(震源),向四周衰减。

 5)边界吸收条件 (不是很明白。。)

作用:声波传播时是没有边界的,因此也不存在边界反射问题。但由于模拟正演时,观测范围有限,因此必然是有边界的,边界吸收条件就是尽可能的将能量吸收,将边界反射降到最低。(我的理解哈,欢迎讨论)以下是两种边界吸收条件。

Clayton-Engquist 单成波吸收边界条件:  最早是由 Clayton 等人发现并推广的, 其微分表达式为:

在这里插入图片描述

其中:n 为边界的外法线方向; s 边界的切线方向。
对上式进行离散得到上、下、左、右边界差分格式如下:
在这里插入图片描述
在这里插入图片描述
其中: 在这里插入图片描述   N 、 M 为边界的网格数。

Reynolds 边界条件:对于二维声波波动方程,应用二维声波方的微分算子可以,得到:

在这里插入图片描述
对上式进行离散可得上下左右边界计算公式:

在这里插入图片描述

在这里插入图片描述

 2、编程实现

1)参数设置:

  1. x/z方向长度1500m,x/z方向空间步长5m,每个方向的采样点数为301;
  2. 模拟时长1s,时间步长0.001s,时间采样数1000;
  3. 震源频率25Hz;
  4. 空间衰减因子0.5;
  5. 波速固定,任何位置都为3000m/s
  6. 震源位置在中心;初始声压为0。
# 区域大小
Nx = 301
Nz = 301
# 空间间隔
dx = h
dy = h

# 时间采样数
Nt = 1000
# 时间步
dt = 1 / Nt

# 速度模型
v = np.ones((Nx+1,Nz+1)) * 3000
u = np.zeros((Nt+1,Nx+1,Nz+1))
h = 5

# 子波主频
fm = 25 
# 空间衰减因子
alpha = 0.5

# 迭代公式中的r
A = v **2 * dt ** 2 / h ** 2 
C = v * dt / h

2)雷克子波及二维空间衰减函数

t = np.arange(0, Nt+1)
t0 = 0  # 延迟时间,相当于在t=t0时激发 ,震幅在t0时最大,相位也在此
s_t = (1 - 2 * (np.pi * fm * dt * (t - t0)) ** 2) * np.exp( - (np.pi * fm * dt * (t - t0)) ** 2)

x = np.arange(0,Nx+1)
z = np.arange(0,Nz+1)
x,z = np.meshgrid(x,z)

h_x_z =  np.zeros((Nx+1,Nz+1))  #np.exp(-0.25 * ((x - Nx//2)**2 + (z - Nz//2)**2))  二维空间衰减函数
h_x_z[Nx//2,Nz//2] = 1   # 在Nx//2,Nz//2处激发
h_x_z =  np.exp(-alpha ** 2 * ((x - Nx//2)**2 + (z - Nz//2)**2))  # 二维空间衰减函数

x0 = Nx // 2
z0 = Nz // 2
u0 = lambda r, s: 0.25*np.exp(-((r-x0)**2+(s-z0)**2))
JJ = np.arange(1,Nz)
II = np.arange(1,Nx)
II,JJ = np.meshgrid(II,JJ)

3)边界吸收条件

# 边界条件
ii = np.arange(Nx+1)
jj = np.arange(Nz+1)
# Clayton-Engquist-majda 二阶吸收边界条件
u[t+1,  0, jj] = (2 - 2 * C[ 0, jj] - C[ 0, jj] ** 2) * u[t,  0, jj] \
                        + 2 * C[ 1, jj] * (1 + C[ 1, jj]) * u[t,  1, jj] \
                        - C[ 2, jj] ** 2 * u[t,  2, jj] \
                        + (2 * C[ 0, jj] - 1) * u[t - 1,  0, jj] \
                        - 2 * C[ 1, jj] * u[t - 1,  1, jj]


# 下部
u[t+1, -1, jj] = (2 - 2 * C[ -1, jj] - C[ -1, jj] ** 2) * u[t,  -1, jj] \
                        + 2 * C[ -2, jj] * (1 + C[ -2, jj]) * u[t,  -2, jj] \
                        - C[ -3, jj] ** 2 * u[t,  -3, jj] \
                        + (2 * C[ -1, jj] - 1) * u[t - 1,  -1, jj] \
                        - 2 * C[ -2, jj] * u[t - 1,  -2, jj]

# 左部
u[t+1, ii,  0] = (2 - 2 * C[ii,  0] - C[ii,  0] ** 2) * u[t,  ii, 0] \
                        + 2 * C[ii,  1] * (1 + C[ii,  1]) * u[t,  ii, 1] \
                        - C[ii,  2] ** 2 * u[t,  ii, 2] \
                        + (2 * C[ii,  0] - 1) * u[t - 1,  ii, 0] \
                        - 2 * C[ii,  1] * u[t - 1,  ii, 1]
# 右部
u[t+1, ii, -1] = (2 - 2 * C[ii,  -1] - C[ii,  -1] ** 2) * u[t,  ii, -1] \
                        + 2 * C[ii,  -2] * (1 + C[ii,  -2]) * u[t,  ii, -2] \
                        - C[ii,  -3] ** 2 * u[t,  ii, -3] \
                        + (2 * C[ii,  -1] - 1) * u[t - 1,  ii, -1] \
                        - 2 * C[ii,  -2] * u[t - 1,  ii, -2]
#Reynolds 边界条件
u[t+1,ii, 0] = u[t,ii, 0] + u[t,ii, 1] - u[t-1,ii, 1] + C[ii, 1]*u[t,ii, 1] - C[ii, 0]*u[t,ii, 0] -C[ii, 2]*u[t-1,ii, 2] +C[ii, 1]*u[t-1,ii, 1]

u[t+1,ii,-1] = u[t,ii,-1] + u[t,ii,-2] - u[t-1,ii,-2] + C[ii,-2]*u[t,ii,-2] - C[ii,-1]*u[t,ii,-1] -C[ii,-3]*u[t-1,ii,-3] +C[ii,-2]*u[t-1,ii,-2]

u[t+1, 0,jj] = u[t, 0,jj] + u[t, 1,jj] - u[t-1, 1,jj] + C[ 1,jj]*u[t, 1,jj] - C[ 0,jj]*u[t, 0,jj] -C[ 2,jj]*u[t-1, 2,jj] +C[ 1,jj]*u[t-1, 1,jj]

u[t+1,-1,jj] = u[t,-1,jj] + u[t,-2,jj] - u[t-1,-2,jj] + C[-2,jj]*u[t,-2,jj] - C[-1,jj]*u[t,-1,jj] -C[-3,jj]*u[t-1,-3,jj] +C[-1,jj]*u[t-1,-2,jj]

4)波动方程,迭代公式:

# 迭代公式
u[t+1,II,JJ] = s_t[t]*h_x_z[II,JJ]+A[II,JJ]*(u[t,II,JJ+1]+u[t,II,JJ-1]+u[t,II+1,JJ]+u[t,II-1,JJ])+(2-4*A[II,JJ])*u[t,II,JJ]-u[t-1,II,JJ]

5)全部代码如下:

import numpy as np
import imageio.v2 as imageio
import os
import pandas as pd
from matplotlib import pyplot as plt
# 解决中文问题
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False


Nx = 301
Nz = 301
Nt = 1000
v = np.ones((Nx+1,Nz+1)) * 3000
h = 5
fm = 25
alpha = 0.5
dt = 1 / Nt
dx = h
dy = h
A = v **2 * dt ** 2 / h ** 2 
C = v * dt / h

r = np.max(v)*dt/h
assert r < 0.707,f'r should < 0.707, but is {r}'
u = np.zeros((Nt+1,Nx+1,Nz+1))


t = np.arange(0, Nt+1)
t0 = 0  # 延迟时间,相当于在t=t0时激发 ,震幅在t0时最大,相位也在此
s_t = (1 - 2 * (np.pi * fm * dt * (t - t0)) ** 2) * np.exp( - (np.pi * fm * dt * (t - t0)) ** 2)

plt.plot(s_t)
plt.show()

x = np.arange(0,Nx+1)
z = np.arange(0,Nz+1)
x,z = np.meshgrid(x,z)
# print(((z - Nz//2)**2).shape)


h_x_z =  np.zeros((Nx+1,Nz+1))  #np.exp(-0.25 * ((x - Nx//2)**2 + (z - Nz//2)**2))  二维空间衰减函数
h_x_z[Nx//2,Nz//2] = 1   # 在Nx//2,Nz//2处激发
h_x_z =  np.exp(-alpha ** 2 * ((x - Nx//2)**2 + (z - Nz//2)**2))  # 二维空间衰减函数


JJ = np.arange(1,Nz)
II = np.arange(1,Nx)
II,JJ = np.meshgrid(II,JJ)

mode = 'c_e'
img_path = './2_order'
if not os.path.exists(img_path):
    os.makedirs(img_path)

for t in range(2,Nt):
    print('\rstep {} / {}'.format(t ,Nt), end="")
    
    # 边界条件
    ii = np.arange(Nx+1)
    jj = np.arange(Nz+1)
    if mode == 'c_e':
        # Clayton-Engquist-majda 二阶吸收边界条件
        u[t+1,  0, jj] = (2 - 2 * C[ 0, jj] - C[ 0, jj] ** 2) * u[t,  0, jj] \
                                + 2 * C[ 1, jj] * (1 + C[ 1, jj]) * u[t,  1, jj] \
                                - C[ 2, jj] ** 2 * u[t,  2, jj] \
                                + (2 * C[ 0, jj] - 1) * u[t - 1,  0, jj] \
                                - 2 * C[ 1, jj] * u[t - 1,  1, jj]


        # 下部
        u[t+1, -1, jj] = (2 - 2 * C[ -1, jj] - C[ -1, jj] ** 2) * u[t,  -1, jj] \
                                + 2 * C[ -2, jj] * (1 + C[ -2, jj]) * u[t,  -2, jj] \
                                - C[ -3, jj] ** 2 * u[t,  -3, jj] \
                                + (2 * C[ -1, jj] - 1) * u[t - 1,  -1, jj] \
                                - 2 * C[ -2, jj] * u[t - 1,  -2, jj]

        # 左部
        u[t+1, ii,  0] = (2 - 2 * C[ii,  0] - C[ii,  0] ** 2) * u[t,  ii, 0] \
                                + 2 * C[ii,  1] * (1 + C[ii,  1]) * u[t,  ii, 1] \
                                - C[ii,  2] ** 2 * u[t,  ii, 2] \
                                + (2 * C[ii,  0] - 1) * u[t - 1,  ii, 0] \
                                - 2 * C[ii,  1] * u[t - 1,  ii, 1]
        # 右部
        u[t+1, ii, -1] = (2 - 2 * C[ii,  -1] - C[ii,  -1] ** 2) * u[t,  ii, -1] \
                                + 2 * C[ii,  -2] * (1 + C[ii,  -2]) * u[t,  ii, -2] \
                                - C[ii,  -3] ** 2 * u[t,  ii, -3] \
                                + (2 * C[ii,  -1] - 1) * u[t - 1,  ii, -1] \
                                - 2 * C[ii,  -2] * u[t - 1,  ii, -2]
    if mode == 're':
        #Reynolds 边界条件
        u[t+1,ii, 0] = u[t,ii, 0] + u[t,ii, 1] - u[t-1,ii, 1] + C[ii, 1]*u[t,ii, 1] - C[ii, 0]*u[t,ii, 0] -C[ii, 2]*u[t-1,ii, 2] +C[ii, 1]*u[t-1,ii, 1]

        u[t+1,ii,-1] = u[t,ii,-1] + u[t,ii,-2] - u[t-1,ii,-2] + C[ii,-2]*u[t,ii,-2] - C[ii,-1]*u[t,ii,-1] -C[ii,-3]*u[t-1,ii,-3] +C[ii,-2]*u[t-1,ii,-2]

        u[t+1, 0,jj] = u[t, 0,jj] + u[t, 1,jj] - u[t-1, 1,jj] + C[ 1,jj]*u[t, 1,jj] - C[ 0,jj]*u[t, 0,jj] -C[ 2,jj]*u[t-1, 2,jj] +C[ 1,jj]*u[t-1, 1,jj]

        u[t+1,-1,jj] = u[t,-1,jj] + u[t,-2,jj] - u[t-1,-2,jj] + C[-2,jj]*u[t,-2,jj] - C[-1,jj]*u[t,-1,jj] -C[-3,jj]*u[t-1,-3,jj] +C[-1,jj]*u[t-1,-2,jj]


    # 迭代公式
    u[t+1,II,JJ] = s_t[t]*h_x_z[II,JJ]*v[II, JJ]**2*dt**2+A[II,JJ]*(u[t,II,JJ+1]+u[t,II,JJ-1]+u[t,II+1,JJ]+u[t,II-1,JJ])+(2-4*A[II,JJ])*u[t,II,JJ]-u[t-1,II,JJ]


    
    plt.imshow(u[t], cmap='gray_r') # 'seismic' gray_r
    # plt.axis('off')  # 隐藏坐标轴
    plt.colorbar()
    if t % 10 == 0:
        plt.savefig(os.path.join(img_path, str(t) + '.png'),
                    bbox_inches="tight", # 去除坐标轴占用空间
                    pad_inches=0.0) # 去除所有白边
        plt.pause(0.05)
        
    plt.cla()
    plt.clf()  # 清除所有轴,但是窗口打开,这样它可以被重复使用
plt.close()

# 保存gif
filenames=[]
for files in os.listdir(img_path ):
    if files.endswith('jpg') or files.endswith('jpeg') or files.endswith('png'):
        file=os.path.join(img_path ,files)
        filenames.append(file)

images = []
for filename in filenames:
    images.append(imageio.imread(filename))

imageio.mimsave(os.path.join(img_path,  'wave.gif'), images,duration=0.0001)

参考:

波动方程数值求解(一)_声波方程的解_MaT--2018的博客-CSDN博客

3、基于matlab的二维波动方程实现

close all
clear
clc

% 此程序是有限差分法实现声波方程数值模拟


%% 参数设置
delta_t = 0.001; % s
delta_s = 10; % 空间差分:delta_s = delta_x = delta_y (m)
nx = 800;
ny = 800;
nt = 1000;
fmain = 12.5;
%loop:按照10000s为一次大循环;slice代表每隔1000s做一个切片
loop_num = 3;
slice = 1000;
slice_index = 1;
%% 初始化
%震源
t = 1:nt;
t0 = 50;
s_t = (1-2*(pi*fmain*delta_t*(t-t0)).^2).*exp(-(pi*fmain*delta_t*(t-t0)).^2);%源
%一个loop代表向后计算10000s,目的是减少内存消耗
%间隔1000s保存一张切片
num_slice = nt*loop_num/slice;
U_loop(1:ny,1:nx,1:num_slice) = 0;
U_next_loop(1:ny,1:nx,1:2) = 0;
%初始化数组变量
w(1:ny,1:nx) = 0;
U(1:ny,1:nx,1:nt) = 0;
w(400,400) = 1;
V(1:ny,1:nx) = 2000;
A = V.^2*delta_t^2/delta_s^2;
B = V*delta_t/delta_s;

%% 开始计算
JJ = 2:ny-1;
II = 2:nx-1;
start_time = clock;
for loop = 1:loop_num
    fprintf('Loop=%d\n',loop)
    for i_t = 2:nt-1
        if(loop>1)
            s_t(i_t) = 0;
        end
        %上边界
        U(1,II,i_t+1) = (2-2*B(1,II)-A(1,II)).*U(1,II,i_t)+2*B(1,II).*(1+B(1,II)).*U(2,II,i_t)...
            -A(1,II).*U(3,II,i_t)+(2*B(1,II)-1).*U(1,II,i_t-1)-2*B(1,II).*U(2,II,i_t-1);
        %下边界
        U(ny,II,i_t+1) = (2-2*B(ny,II)-A(ny,II)).*U(ny,II,i_t)+2*B(ny,II).*(1+B(ny,II)).*U(ny-1,II,i_t)...
            -A(ny,II).*U(ny-2,II,i_t)+(2*B(ny,II)-1).*U(ny,II,i_t-1)-2*B(1,II).*U(ny-1,II,i_t-1);
        %左边界
        U(JJ,1,i_t+1) = (2-2*B(JJ,1)-A(JJ,1)).*U(JJ,1,i_t)+2*B(JJ,1).*(1+B(JJ,1)).*U(JJ,1+1,i_t)...
                            -A(JJ,1).*U(JJ,1+2,i_t)+(2*B(JJ,1)-1).*U(JJ,1,i_t-1)-2*B(JJ,1).*U(JJ,1+1,i_t-1);
        %右边界
        U(JJ,nx,i_t+1) = (2-2*B(JJ,nx)-A(JJ,nx)).*U(JJ,nx,i_t)+2*B(JJ,nx).*(1+B(JJ,nx)).*U(JJ,nx-1,i_t)...
                            -A(JJ,nx).*U(JJ,nx-2,i_t)+(2*B(JJ,nx)-1).*U(JJ,nx,i_t-1)-2*B(JJ,nx).*U(JJ,nx-1,i_t-1);
        %递推公式
        U(JJ,II,i_t+1) = s_t(i_t).*w(JJ,II)+A(JJ,II).*(U(JJ,II+1,i_t)+U(JJ,II-1,i_t)+U(JJ+1,II,i_t)+U(JJ-1,II,i_t))+...
                            (2-4*A(JJ,II)).*U(JJ,II,i_t)-U(JJ,II,i_t-1);
        if(mod(i_t,100)==0)
            run_time = etime(clock,start_time);
            fprintf('step=%d,total=%d,累计耗时%.2fs\n',i_t+(loop-1)*nt,nt*loop_num,run_time)
            U_loop(:,:,slice_index) = U(:,:,i_t);
            slice_index = slice_index +1;
        end
    end
    %处理四个角点
    KK = 1:nt;
    U(1,1,KK) = 1/2*(U(1,2,KK)+U(2,1,KK));
    U(1,nx,KK) = 1/2*(U(1,nx-1,KK)+U(2,nx,KK));
    U(ny,1,KK) = 1/2*(U(ny-1,1,KK)+U(ny,2,KK));
    U(ny,nx,KK) = 1/2*(U(ny-1,nx,KK)+U(ny,nx-1,KK));
    %% 为下一次loop做准备
    fprintf('step=%d,total=%d,累计耗时%.2fs\n',i_t+1+(loop-1)*nt,nt*loop_num,run_time)
    U_loop(:,:,slice_index) = U(:,:,nt);
    slice_index = slice_index +1;
    U_next_loop(:,:,1)=U(:,:,nt-1);
    U_next_loop(:,:,2)=U(:,:,nt);
    U(:,:,:) = 0;
    U(:,:,1) = U_next_loop(:,:,1);
    U(:,:,2) = U_next_loop(:,:,2);
end

%% 制作动图
fmat=moviein(num_slice);
filename = 'FDM_4_homogenerous.gif';
for II = 1:num_slice
    pcolor(U_loop(:,:,II));
    shading interp;
    axis tight;
    set(gca,'yDir','reverse');
    str_title = ['FDM-4-homogenerous  t=',num2str(delta_t*II*100),'s'];
    title(str_title)
    drawnow; %刷新屏幕
    F = getframe(gcf);%捕获图窗作为影片帧
    I = frame2im(F); %返回图像数据
    [I, map] = rgb2ind(I, 256); %将rgb转换成索引图像
    if II == 1
        imwrite(I,map, filename,'gif', 'Loopcount',inf,'DelayTime',0.1);
    else
        imwrite(I,map, filename,'gif','WriteMode','append','DelayTime',0.1);
    end
    fmat(:,II)=getframe;
end
movie(fmat,10,5);
%% 绘图为gif
pcolor(U_loop(:,:,num_slice))
shading interp;
axis tight;
set(gca,'yDir','reverse');
str_title = ['FDM-4-homogenerous  t=',num2str(delta_t*num_slice*100),'s'];
title(str_title)
colormap('Gray')
filename = [str_title,'.jpg'];
saveas(gcf,filename)

%% 耗时
toc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/375488.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RNN相关知识总结

目录RNN结构与原理1.模型总览2.反向传播LSTM结构与原理1.模型总览2.如何解决RNN梯度消失/爆炸问题&#xff1f;GRU结构及原理1.模型总览LSTM与GRU的区别RNN结构与原理 1.模型总览 上图是RNN的展开结构图&#xff0c;由输入层、隐藏层和输出层组成。当前时间步t 的隐藏状态hth_…

Spark 分析计算连续三周登录的用户数

前言&#xff1a;本文用到了窗口函数 range between&#xff0c;可以参考这篇博客进行了解——窗口函数rows between 、range between的使用 创建数据环境 在 MySQL 中创建数据测试表 log_data&#xff1a; create table if not exists log_data( log_id varchar(200) comm…

能在软路由docker给部署搭建teamsperk服务器么?并且设置好ddns

参考链接(4条消息) 【个人学习总结】使用docker搭建Teamspeak服务器_blcurtain的博客-CSDN博客_teamspeak3 docker(⊙﹏⊙)哎呀&#xff0c;崩溃啦&#xff01; (tdeh.top)TeamSpeak服务器搭建与使用 - 缘梦の镇 (cmsboy.cn)Openwrt X86 docker运行甜糖-软路由,x86系统,openwrt…

(四)K8S 安装 Nginx Ingress Controller

ingress-nginx 是 Kubernetes 的入口控制器&#xff0c;使用NGINX作为反向代理和负载均衡器 版本介绍 版本1&#xff1a;Ingress NGINX Controller(k8s社区的ingres-nginx) 以 NGINX 开源技术为基础&#xff08;kubernetes.io&#xff09;&#xff0c;可在GitHub的 kubernet…

如何创建并管理一个刷题小组?

“如何收回用户对题库的使用权”&#xff0c;这是一个大多数题库创建人都会碰到的管理问题&#xff0c;也是日常咨询频繁的问题。土著刷题在v1.10版本已经上线了小组模块功能&#xff0c;小组拥有丰富的用户管理功能&#xff0c;可以管理组员对于题库的使用权进行有效的管理。咱…

高压放大器在应力波法套筒灌浆密实度检测研究中的应用

实验名称&#xff1a;高压放大器在应力波法套筒灌浆密实度检测研究中的应用研究方向&#xff1a;无损检测测试目的&#xff1a;钢筋套筒灌浆连接技术被广泛应用于装配式建筑节点连接中&#xff0c;但灌浆不密实将导致节点失效的风险。因此&#xff0c;施工中对套筒灌浆的密实度…

使用xca工具生成自签证书

本文使用 xca 生成自签证书。 概述 之前使用 openssl 生成证书&#xff0c;在 golang 中测试&#xff0c;发现客户端连接失败&#xff0c;经查发现是Subject Alternative Name不支持导致的。因虚拟机 openssl 版本较低&#xff0c;有个功能无法实现&#xff0c;且升级麻烦&…

SAP SD模块学习总结2 2023.2.27

https://www.cnblogs.com/jiangzhengjun/p/7264657.html#_Toc410466840 首先是表&#xff1a; VBAK: 销售订单抬头 VBAP: 销售订单项目 VBUK: 抬头状态 VBUP: 行项目状态 VBKD:销售凭证&#xff1a; 业务数据 VBPA: 销售凭证: 合作伙伴 VBEP&#xff1a;销售凭证&#xff1a;…

【论文速递】COLING 2022 - 带有事件论元相关性的事件因果关系抽取

【论文速递】COLING 2022 - 带有事件论元相关性的事件因果关系抽取 【论文原文】&#xff1a;Event Causality Extraction with Event Argument Correlations 【作者信息】&#xff1a;Cui, Shiyao and Sheng, Jiawei and Cong, Xin and Li, Quangang and Liu, Tingwen and S…

Android NDK动态加载SO库

背景对于一个普通的android应用来说&#xff0c;so库的占比通常都是巨高不下的&#xff0c;因为我们无可避免的在开发中遇到各种各样需要用到native的需求&#xff0c;所以so库的动态化可以减少极大的包体积&#xff0c;自从2020腾讯的bugly团队发部关于动态化so的相关文章后&a…

fuse:纠结的page下刷流程之fuse_writepage_in_flight

fuse&#xff1a;纠结的page下刷流程细节之fuse_writepage_in_flightfuse_writepage_in_flight硬爬代码自己理解消化作者本人如是说fuse_writepage_in_flight 先说下这个函数&#xff0c;位于fs/fuse/file.c&#xff0c;这里以4.19内核来分析。因为这个函数里面藏了很多小细节…

华为OD机试模拟题 用 C++ 实现 - 删除指定目录(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明删除指定目录题目输入输出示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为…

Macbook M1 安装PDI(Kettle) 9.3

Macbook M1 安装PDI(Kettle) 9.3 当前 PDI&#xff08;Kettle&#xff09;最新版为9.3&#xff0c;依赖Java JDK 11。因为没有专门用于 M1的程序&#xff0c;需要下载并安装x86_64架构的JDK及依赖软件&#xff0c;并 “强制在Intel模式下运行shell” 的方式来实现 Kettle 的正…

骨传导蓝牙耳机排行,盘点几款性能不错的骨传导耳机

随着蓝牙耳机的普及&#xff0c;骨传导耳机也越来越受到欢迎&#xff0c;很多人也都开始在了解并尝试骨传导耳机。相比于其他类型耳机&#xff0c;在舒适度、安全方面有一定优势。尤其是在户外运动时&#xff0c;或者长时间佩戴运动时&#xff0c;使用骨传导耳机可以避免耳朵因…

从“入门”到“专家”,一份3000字完整的性能测试体系的知识分享

随着科技的飞速发展&#xff0c;软件产品广泛应用于各个行业领域&#xff0c;人们对计算机和网络的依赖性越来越大&#xff0c;对新奇事物也越来越感兴趣&#xff0c;成千上万的用户活跃在庞大的网络系统中&#xff0c;这给提供服务的系统带来严重的负荷&#xff0c;"高并…

QT之图形视图框架概述——Graphics View Framework

QT之图形视图框架概述——Graphics View Framework1. 概述2. 核心类3. 事件传递4. Graphics View 坐标系统5. 参考1. 概述 Graphics View Framework是子Qt 4.2引入的&#xff0c;用来取代之前版本中的QCanvas。Graphics View Framework提拱了用于大量2D图形项的管理和交互的能…

Spring Boot 统一功能处理(用户登录权限效验-拦截器、异常处理、数据格式返回)

文章目录1. 统一用户登录权限效验1.1 最初用户登录权限效验1.2 Spring AOP 统一用户登录验证1.3 Spring 拦截器1.4 练习&#xff1a;登录拦截器1.5 拦截器实现原理1.6 统一访问前缀添加2. 统一异常处理3. 统一数据格式返回3.1 统一数据格式返回的实现3.2 ControllerAdvice 源码…

day21_IO

今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、File 三、IO流 四、字节输入&输出流 零、 复习昨日 见晨考 一、作业 见答案二、File 2.1 介绍 File,通过一个路径代表文件或者文件夹 …

Panda Farm:首个部署在 Arbitrum 上的轻量化 GameFi 游戏

在2月16日&#xff0c;Bitget平台宣布 Launchpad 重新启动&#xff0c;并推出了重启后的首个项目 Panda Farm&#xff08;BBO&#xff09;&#xff0c;该 Launchpad 启动后得到了较高的关注。 Panda Farm 是部署在 Arbitrum 上的 GameFi应用&#xff0c;这可能首先意味着 Bitge…

技术干货 | Modelica建模秘籍之状态变量

在很多领域都有“系统”这个概念&#xff0c;它描述的往往是一些复杂关系的总和。假如我们将系统看做一个黑箱&#xff0c;那么&#xff0c;在系统的作用下&#xff0c;外界的输入有时会产生令人意想不到的输出&#xff0c;“蝴蝶效应”就是其中的典型案例。图1 一只南美洲亚马…