Python实现贝叶斯优化器(Bayes_opt)优化LightGBM分类模型(LGBMClassifier算法)项目实战

news2024/11/17 21:32:46

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

贝叶斯优化器(BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。

贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。

贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。

本项目使用基于贝叶斯优化器(Bayes_opt)优化LightGBM分类算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有10个字段。

关键代码:

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

关键代码如下:

4.探索性数据分析

4.1y变量分类柱状图

用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:

从上面图中可以看到,分类为0和1的样本,数量基本一致。

4.2y变量类型为1 x1变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,x1主要集中在-2到2之间。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

5.2数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建贝叶斯优化器优化LightGBM分类模型

主要使用基于贝叶斯优化器优化LightGBM分类算法,用于目标分类。

6.1构建调优模型

6.2最优参数展示

寻优的过程信息:

最优参数结果展示:

最优参数组合:

num_leaves的参数值为: 19

n_estimators的参数值为: 411

learning_rate的参数值为: 0.02

最优分数: 0.905

验证集准确率: 0.86

6.3最优参数构建模型

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。

从上表可以看出,F1分值为0.8571,说明此模型效果较好。

关键代码如下:

7.2分类报告

LightGBM分类模型的分类报告:

从上图可以看到,分类类型为0的F1分值为0.87;分类类型为1的F1分值为0.86;整个模型的准确率为0.86。

7.3混淆矩阵

从上图可以看出,实际为0预测不为0的 有14个样本;实际为1预测不为1的有13个样本,整体预测准确率良好。

8.结论与展望

综上所述,本项目采用了基于贝叶斯优化器优化LightGBM分类模型,最终证明了我们提出的模型效果良好。


本次机器学习项目实战所需的资料,项目资源如下:
 
项目说明:
 
链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ
 
提取码:thgk

更多项目实战,详见机器学习项目实战合集列表

https://blog.csdn.net/weixin_42163563/article/details/127714353


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/375160.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring Cloud融合Nacos实现服务的注册与发现 | Spring Cloud 4

一、前言 服务发现是微服务架构体系中最关键的组件之一。如果尝试着用手动的方式来给每一个客户端来配置所有服务提供者的服务列表是一件非常困难的事,而且也不利于服务的动态扩缩容。 Spring Cloud Alibaba Nacos Discovery通过自动配置以及其他Spring 编程模型的…

独立产品灵感周刊 DecoHack #049 - 开发者如何学习UI设计

本周刊记录有趣好玩的独立产品设计开发相关内容,每周发布,往期内容同样精彩,感兴趣的伙伴可以点击订阅我的周刊。为保证每期都能收到,建议邮件订阅。欢迎通过 Twitter 私信推荐或投稿。💻 产品推荐 1. method.ac 这个…

一文读懂账号体系产品设计

一、账号体系的概念及价值账号体系是用户在各平台上的通行证。平台给与用户可持续的服务,用户在平台上获取价值,中间的媒介,便是账号体系。阿境将其理解为维系用户与平台之间的枢纽。注:本文中,账号账户,二…

《Python机器学习》基础代码2

👂 逝年 - 夏小虎 - 单曲 - 网易云音乐 目录 👊Matplotlib综合应用:空气质量监测数据的图形化展示 🌼1,AQI时序变化特点 🌼2,AQI分布特征 相关性分析 🌼3,优化图形…

Python实现GWO智能灰狼优化算法优化循环神经网络回归模型(LSTM回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。1.项目背景灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优…

Linux和Windows环境下配置Redis开机自启动

Linux和Windows环境下配置Redis开机自启动前言Linux服务器上设置开机自启动前置条件配置开机自启动启动的配置文件添加脚本的设置Windows设置开机自启其他简单命令前言 rt,没怎么接触过服务器还要摊上这么档子事,面试的时候也没说要跟服务器打交道啊。。…

【前端】JS异步加载

文章目录为什么要异步加载如何实现异步加载参考为什么要异步加载 两个原因其实是一个意思。 原因1: JS是单线程的语言,它会同步的执行代码,从上往下执行 但是,一旦网络不好,或要加载的js文件过大的话,会…

记一次真实liunx挖矿病毒处理

在一个周末的晚上,收到了群里一个学弟的消息:话不多说开始应急:发现新增用户包括计划任务,包括使用率为百分百的cpu,可以确定是被入侵且植入了挖矿病毒。后门用户:计划任务:top查看进程信息&…

2.27 junit5常用语法

一.了解junitjunit是一个开源的java单元测试框架,java方向使用最广泛的单元测试框架.所需要的依赖<dependencies><!-- https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java --><dependency><groupId>org.seleniumhq.selenium&l…

敏捷测试需要遵循的原则

摘要&#xff1a;与传统的阶段性测试不同的是&#xff0c;敏捷测试能够将测试集成到整个软件开发过程中&#xff0c;尽早、及时地发现缺陷&#xff0c;帮助交付有价值的高质量产品。 传统测试与敏捷测试的比较大的区别在于&#xff1a; 在瀑布方法中&#xff0c;测试只能在开发…

400G光模块知识大全

400G光模块是目前高速传输领域中的一种先进产品&#xff0c;被广泛应用于高性能数据中心、通信网络、大规模计算、云计算等领域。本文将从400G光模块的定义、技术、产品型号、应用场景以及未来发展方向进行详细介绍。一、什么是400G光模块&#xff1f;400G光模块是指传输速率达…

PCI子系统

很多网络接口卡都是外围组件互联&#xff08;Peripheral Compaonent Interconnect&#xff09;设备&#xff0c;必须与Linux PCI子系统协同工作&#xff0c;并非所有的网络接口都是PCI设备&#xff0c;很多嵌入式设备的网络接口连接的就不是PCI总线&#xff0c;这些设备的初始化…

学习 Python 之 Pygame 开发魂斗罗(六)

学习 Python 之 Pygame 开发魂斗罗&#xff08;六&#xff09;继续编写魂斗罗1. 创建碰撞类2. 给地图添加碰撞体3. 让人物可以掉下去4. 实现人物向下跳跃5. 完整的代码继续编写魂斗罗 在上次的博客学习 Python 之 Pygame 开发魂斗罗&#xff08;五&#xff09;中&#xff0c;我…

单例模式之饿汉、懒汉模式

目录 1.单例模式 1.1 饿汉模式 1.2 懒汉模式 1.单例模式 单例模式能保证类在程序中只存在唯一一份实例.这一点在很多场景中都需要,比如JDBC中的DataSource实例就只需要一个. 单例模式具体的是实现方法主要有两种:饿汉模式和懒汉模式. 1.1 饿汉模式 饿汉摸模式是指,在类加…

多模态推荐系统综述

推荐系统(RS)已经成为在线服务不可或缺的工具。它们集成了各种深度学习技术&#xff0c;可以根据标识符和属性信息对用户偏好进行建模。随着短视频、新闻等多媒体服务的出现&#xff0c;在推荐的同时了解这些内容变得至关重要。此外&#xff0c;多模态特征也有助于缓解RS中的数…

我的 System Verilog 学习记录(6)

引言 本文简单介绍 SystemVerilog 语言的 线程。 前文链接&#xff1a; 我的 System Verilog 学习记录&#xff08;1&#xff09; 我的 System Verilog 学习记录&#xff08;2&#xff09; 我的 System Verilog 学习记录&#xff08;3&#xff09; 我的 System Verilog 学…

Redis之数据类型详解分析

文章目录1 Redis1.1 概述1.2 查看内部编码1.3 String字符串1.3.1 简介1.3.2 应用常景1.3.3 String内部编码1.4 Hash散列1.4.1 简介1.4.2 应用常景1.4.3 Hash内部编码1.4.4 rehash和渐进式rehash操作1.4.4.1 过程1.4.4.2 rehash触发条件1.4.5 跟JDK的HashMap的区别1.5 List列表1…

kibana搭建(windowslinux)

1.说明 搭建kibana方便查询es库&#xff0c;本文分别对windows和linux版本进行安装&#xff0c;因为es集群版本是7.4.1&#xff0c;所以配套的kibana也是选择相同版本 2.下载 https://artifacts.elastic.co/downloads/kibana/kibana-7.4.1-windows-x86_64.zip https://artifact…

newbing的注册使用

newbing是一款全新的智能搜索引擎&#xff0c;它可以帮助你快速、准确地找到你想要的信息&#xff0c;还可以与你进行友好、有趣的对话。newbing不仅拥有强大的搜索功能&#xff0c;还具备创造性和逻辑性&#xff0c;可以为你生成诗歌、故事、代码、歌词等各种内容。newbing还可…

FastDDS-1.开始

开始 这一节定义了DDS和RTPS的概念&#xff0c;也提供了一个逐步讲解的教程&#xff0c;这个教程中讲解了如何开发一个简单的FastDDS发布订阅应用程序。 1.1 什么是DDS DDS是一个以数据为中心的通信一些&#xff0c;主要用在分布式软件的通信领域。它定义了应用程序的通信API…