leetcode 518.零钱兑换II
leetcode 377.组合总和IV
完全背包基础
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
然举这个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
每件商品都有无限个!
01背包和完全背包唯一不同就是体现在遍历顺序上。
回顾以下01背包的核心代码:
for(int i = 0; i < weight.size(); i++){
for(int j = maxWeight; j >= weight[i]; j--){
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
for(int i = 0; i < weight.size(); i++){
for(int j = weight[i]; j <= maxWeight; j++){
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
dp状态图如下:
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
先遍历背包在遍历物品,代码如下:
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}
leetcode 518.零钱兑换II
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
动规五部曲:
确定dp数组以及下标的含义
dp[j]:凑成总金额j的货币组合数为dp[j]
确定递推公式
dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。
所以递推公式:dp[j] += dp[j - coins[i]];
这个递推公式和leetcode 494.目标和的类似。
dp数组如何初始化
dp[0]一定要为1,dp[0] = 1是递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。
确定遍历顺序
前面提到完全背包的两个for循环的先后顺序都是可以的,但本题不行。
而本题要求凑成总和的组合数,元素之间明确要求没有顺序。
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
本题是求凑出来的方案个数,且每个方案个数是为组合数。
先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。
代码如下:
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
dp[j] += dp[j - coins[i]];
}
}
假设:coins[0] = 1,coins[1] = 5。
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
所以这种遍历顺序中dp[j]里计算的是组合数!
如果把两个for交换顺序,代码如下:
for (int j = 0; j <= amount; j++) { // 遍历背包容量
for (int i = 0; i < coins.size(); i++) { // 遍历物品
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
}
}
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。此时dp[j]里算出来的就是排列数。
举例推导dp数组
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
整体代码如下:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for(int i = 0; i < coins.size(); i++){
for(int j = coins[i]; j <= amount; j++){
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
leetcode 377.组合总和IV
给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。
示例:
nums = [1, 2, 3]
target = 4
所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)
请注意,顺序不同的序列被视作不同的组合。
因此输出为 7。
本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列。
其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。
如果本题要把排列都列出来的话,只能使用回溯算法爆搜。
动规五部曲:
确定dp数组以及下标的含义
dp[i]: 凑成目标正整数为i的排列个数为dp[i]
确定递推公式
递推公式是dp[i] += dp[i - nums[j]];
dp数组如何初始化
因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。
至于dp[0] = 1 有没有意义呢?
其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。
至于非0下标的dp[i]应该初始为多少呢?
初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。
确定遍历顺序
如果求组合数就是外层for循环遍历物品,内层for遍历背包。(上一题)
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
举例来推导dp数组
我们再来用示例中的例子推导一下:
整体代码如下:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for(int i = 0; i <= target; i++){
for(int j = 0; j < nums.size(); j++){
if(i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]])
dp[i] += dp[i - nums[j]];
}
}
return dp[target];
}
};
C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]。