JVM垃圾回收器概述

news2024/9/25 21:26:06

在这里插入图片描述

Serial串行回收

Serial收集器是最基本、历史最悠久的垃圾收集器了。JDK1.3之前回收新生代唯一的选择。

Serial收集器作为HotSpot中client模式下的默认新生代垃圾收集器。

Serial收集器采用复制算法、串行回收和"stop-the-World"机制的方式执行内存回收。

除了年轻代之外,Serial收集器还提供用于执行老年代垃圾收集的Serial Old收集器。Serial Old收集器同样也采用了串行回收和"Stop the World"机制,只不过内存回收算法使用的是标记-压缩算法

  • Serial old是运行在Client模式下默认的老年代的垃圾回收器
  • Serial 0ld在Server模式下主要有两个用途:① 与新生代的Parallel scavenge配合使用 ② 作为老年代CMS收集器的后备垃圾收集方案

[
这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World)

优势:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。运行在Client模式下的虚拟机是个不错的选择。

在用户的桌面应用场景中,可用内存一般不大(几十MB至一两百MB),可以在较短时间内完成垃圾收集(几十ms至一百多ms),只要不频繁发生,使用串行回收器是可以接受的。

在HotSpot虚拟机中,使用-XX:+UseSerialGC参数可以指定年轻代和老年代都使用串行收集器。等价于新生代用Serial GC,且老年代用Serial Old GC

总结

这种垃圾收集器大家了解,现在已经不用串行的了。而且在限定单核cpu才可以用。现在都不是单核的了。

对于交互较强的应用而言,这种垃圾收集器是不能接受的。一般在Java web应用程序中是不会采用串行垃圾收集器的。

ParNew并行回收

如果说Serial GC是年轻代中的单线程垃圾收集器,那么ParNew收集器则是Serial收集器的多线程版本。Par是Parallel的缩写,New:只能处理的是新生代

ParNew 收集器除了采用并行回收的方式执行内存回收外,两款垃圾收集器之间几乎没有任何区别。ParNew收集器在年轻代中同样也是采用复制算法、"Stop-the-World"机制。

[

  • 对于新生代,回收次数频繁,使用并行方式高效。
  • 对于老年代,回收次数少,使用串行方式节省资源。(CPU并行需要切换线程,串行可以省去切换线程的资源)

由于ParNew收集器是基于并行回收,那么是否可以断定ParNew收集器的回收效率在任何场景下都会比serial收集器更高效?

  • ParNew 收集器运行在多CPU的环境下,由于可以充分利用多CPU、多核心等物理硬件资源优势,可以更快速地完成垃圾收集,提升程序的吞吐量。
  • 但是在单个CPU的环境下,ParNew收集器不比Serial 收集器更高效。虽然Serial收集器是基于串行回收,但是由于CPU不需要频繁地做任务切换,因此可以有效避免多线程交互过程中产生的一些额外开销。

因为除Serial外,目前只有ParNew GC能与CMS收集器配合工作

在程序中,开发人员可以通过选项"-XX:+UseParNewGC"手动指定使用ParNew收集器执行内存回收任务。它表示年轻代使用并行收集器,不影响老年代。

-XX:ParallelGCThreads限制线程数量,默认开启和CPU数据相同的线程数。

Parallel吞吐量优先

HotSpot的年轻代中除了拥有ParNew收集器是基于并行回收的以外,Parallel Scavenge收集器同样也采用了复制算法、并行回收和"Stop the World"机制。

那么Parallel 收集器的出现是否多此一举?

  • 和ParNew收集器不同,ParallelScavenge收集器的目标则是达到一个可控制的吞吐量(Throughput),它也被称为吞吐量优先的垃圾收集器。
  • 自适应调节策略也是Parallel Scavenge与ParNew一个重要区别。

高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序。

Parallel 收集器在JDK1.6时提供了用于执行老年代垃圾收集的Parallel Old收集器,用来代替老年代的Serial Old收集器。

Parallel Old收集器采用了标记-压缩算法,但同样也是基于并行回收和"Stop-the-World"机制。

[

CMS低延迟

在JDK1.5时期,Hotspot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器:CMS(Concurrent-Mark-Sweep)收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。

CMS收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。

  • 目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

CMS的垃圾收集算法采用标记-清除算法,并且也会"Stop-the-World"

不幸的是,CMS作为老年代的收集器,却无法与JDK1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。

在G1出现之前,CMS使用还是非常广泛的。一直到今天,仍然有很多系统使用CMS GC。

[

CMS整个过程比之前的收集器要复杂,整个过程分为4个主要阶段,即初始标记阶段、并发标记阶段、重新标记阶段和并发清除阶段

  • 初始标记(Initial-Mark)阶段:在这个阶段中,程序中所有的工作线程都将会因为“Stop-the-World”机制而出现短暂的暂停,这个阶段的主要任务仅仅只是标记出GCRoots能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小,所以这里的速度非常快。
  • 并发标记(Concurrent-Mark)阶段:从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。
  • 重新标记(Remark)阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或者交叉运行,因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短。
  • 并发清除(Concurrent-Sweep)阶段:此阶段清理删除掉标记阶段判断的已经死亡的对象,释放内存空间。由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的

尽管CMS收集器采用的是并发回收(非独占式),但是在其初始化标记和再次标记这两个阶段中仍然需要执行“Stop-the-World”机制暂停程序中的工作线程,不过暂停时间并不会太长,因此可以说明目前所有的垃圾收集器都做不到完全不需要“stop-the-World”,只是尽可能地缩短暂停时间。

由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低停顿的。

另外,由于在垃圾收集阶段用户线程没有中断,所以在CMS回收过程中,还应该确保应用程序用户线程有足够的内存可用。因此,CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,而是当堆内存使用率达到某一阈值时,便开始进行回收,以确保应用程序在CMS工作过程中依然有足够的空间支持应用程序运行。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure” 失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

CMS收集器的垃圾收集算法采用的是标记清除算法,这意味着每次执行完内存回收后,由于被执行内存回收的无用对象所占用的内存空间极有可能是不连续的一些内存块,不可避免地将会产生一些内存碎片。那么CMS在为新对象分配内存空间时,将无法使用指针碰撞(Bump the Pointer)技术,而只能够选择空闲列表(Free List)执行内存分配。

有人会觉得既然Mark Sweep会造成内存碎片,那么为什么不把算法换成Mark Compact?

答案其实很简单,因为当并发清除的时候,用Compact整理内存的话,原来的用户线程使用的内存还怎么用呢?要保证用户线程能继续执行,前提的它运行的资源不受影响嘛。Mark Compact更适合“Stop the World” 这种场景下使用

CMS优点

  • 并发收集
  • 低延迟

CMS缺点

  • 会产生内存碎片,导致并发清除后,用户线程可用的空间不足。在无法分配大对象的情况下,不得不提前触发FullGC。
  • CMS收集器对CPU资源非常敏感。在并发阶段,它虽然不会导致用户停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
  • CMS收集器无法处理浮动垃圾。可能出现“Concurrent Mode Failure"失败而导致另一次Full GC的产生。在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的,那么在并发标记阶段如果产生新的垃圾对象,CMS将无法对这些垃圾对象进行标记,最终会导致这些新产生的垃圾对象没有被及时回收,从而只能在下一次执行GC时释放这些之前未被回收的内存空间。

G1区域化分代式

既然我们已经有了前面几个强大的GC,为什么还要发布Garbage First(G1)?

原因就在于应用程序所应对的业务越来越庞大、复杂,用户越来越多,没有GC就不能保证应用程序正常进行,而经常造成STW的GC又跟不上实际的需求,所以才会不断地尝试对GC进行优化。G1(Garbage-First)垃圾回收器是在Java7 update4之后引入的一个新的垃圾回收器,是当今收集器技术发展的最前沿成果之一。

与此同时,为了适应现在不断扩大的内存和不断增加的处理器数量,进一步降低暂停时间(pause time),同时兼顾良好的吞吐量。

官方给G1设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才担当起“全功能收集器”的重任与期望。

为什么名字叫 Garbage First(G1)呢?

因为G1是一个并行回收器,它把堆内存分割为很多不相关的区域(Region)(物理上不连续的)。使用不同的Region来表示Eden、幸存者0区,幸存者1区,老年代等

G1 GC有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。

由于这种方式的侧重点在于回收垃圾最大量的区间(Region),所以我们给G1一个名字:垃圾优先(Garbage First)。

G1(Garbage-First)是一款面向服务端应用的垃圾收集器,主要针对配备多核CPU及大容量内存的机器,以极高概率满足GC停顿时间的同时,还兼具高吞吐量的性能特征。

在JDK1.7版本正式启用,移除了Experimenta1的标识,是JDK9以后的默认垃圾回收器,取代了CMS回收器以及Parallel+Parallel Old组合。被Oracle官方称为“全功能的垃圾收集器”。

与此同时,CMS已经在JDK9中被标记为废弃(deprecated)。在jdk8中还不是默认的垃圾回收器,需要使用-XX:+UseG1GC来启用。

并行与并发

  • 并行性:G1在回收期间,可以有多个GC线程同时工作,有效利用多核计算能力。此时用户线程STW
  • 并发性:G1拥有与应用程序交替执行的能力,部分工作可以和应用程序同时执行,因此,一般来说,不会在整个回收阶段发生完全阻塞应用程序的情况

分代收集

  • 从分代上看,G1依然属于分代型垃圾回收器,它会区分年轻代和老年代,年轻代依然有Eden区和Survivor区。但从堆的结构上看,它不要求整个Eden区、年轻代或者老年代都是连续的,也不再坚持固定大小和固定数量。
  • 将堆空间分为若干个区域(Region),这些区域中包含了逻辑上的年轻代和老年代。
  • 和之前的各类回收器不同,它同时兼顾年轻代和老年代。对比其他回收器,或者工作在年轻代,或者工作在老年代;

[

空间整合

  • CMS:“标记-清除”算法、内存碎片、若干次Gc后进行一次碎片整理
  • G1将内存划分为一个个的region。内存的回收是以region作为基本单位的。Region之间是复制算法,但整体上实际可看作是标记-压缩(Mark-Compact)算法,两种算法都可以避免内存碎片。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。尤其是当Java堆非常大的时候,G1的优势更加明显。

可预测的停顿时间模型(即:软实时soft real-time)

这是G1相对于CMS的另一大优势,G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。

  • 由于分区的原因,G1可以只选取部分区域进行内存回收,这样缩小了回收的范围,因此对于全局停顿情况的发生也能得到较好的控制。
  • G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。
  • 相比于CMSGC,G1未必能做到CMS在最好情况下的延时停顿,但是最差情况要好很多。

其四个过程类似CMS

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/372011.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Redis】概述环境搭建(一)

🚗Redis学习起始站~ 🚩本文已收录至专栏:数据库学习之旅 👍希望您能有所收获 一.初识Redis (1) 概述 Redis诞生于2009年全称是Remote Dictionary Server 远程词典服务器,是一个基于内存的键值型NoSQL数据库。这里有两…

数字IC笔试题---千题解,量大管饱,图文并茂

前言:出笔试题汇总,是为了总结秋招可能遇到的问题,做题不是目的,在做题的过程中发现自己的漏洞,巩固基础才是目的。所有题目结果和解释由笔者给出,答案主观性较强,若有错误欢迎评论区指出&#…

es8集群模式部署

准备3台机器 192.168.1.41 192.168.1.42 192.168.1.43因为es集群有几个节点,所以我对应node1,node2,node3.这几个名称并不是主机名,而是es节点名称 2. 开始部署,基础配置 (三台都做) systemctl stop firewalld syste…

【数据库】SQL语句

第三章 SQL SQL(structured Query Language) SQL概述 SQL特点 综合统一。高度非过程化。面向集合的操作方式。以同一种语法结构提供多种使用方式。语言简洁易学易用。 主要版本 SQL-89SQL-92 ,SQL2SQL-99 ,SQL3 数据库结构 SQL语言是集DDL、DML和DCL于一体的数据库语言…

网安入门,这篇文章足够了(内含海量资料)

随着新一轮科技和产业变革加速演进,人工智能、物联网、大数据、5G等新兴技术在成为经济社会发展的助推器的同时,也让网络空间变得更加复杂。全球范围内网络安全事件日益增加,网络安全的重要性日渐凸显。 “我国网络空间安全人才年培养规模在…

STM32——窗口看门狗

什么是窗口看门狗? 窗口看门狗用于监测单片机程序运行时效是否精准,主要检测软件异常,一般用于需要精准检测 程序运行时间的场合。 窗口看门狗的本质是一个能产生系统复位信号和提前唤醒中断的6位计数器。 产生复位条件: 当递减…

CLion开发图书管理系统项目 (c++ + MySQL实现)

项目仓库 :传送门 需求分析 当下市场日益激烈的竞争迫使图书企业采用一种新的管理方式来加快图书管理操作,而计算机技术的发展为图书管理注入了新的生机。通过调查市场,一款合格的图书管理系统必须具备以下三个特点: 能够对图书…

注解原理剖析与实战

一、注解及其原理 1.注解的基本概念 注解,可以看作是对 一个类/方法的一个扩展的模版,每个类/方法按照注解类中的规则,来为类/方法注解不同的参数,在用到的地方可以得到不同的类/方法中注解的各种参数与值。 从JDK5开始&#xff…

【必学】最流行的云原生监控解决方案:Prometheus+Grafana

文章目录一、Prometheus和Grafana简介1.1、Prometheus是最受欢迎的云原生监控方案之一1.2、Grafana是最流行的开源可视化平台二、Prometheus的优势三、Prometheus架构原理四、Prometheus和Grafana安装部署一、Prometheus和Grafana简介 1.1、Prometheus是最受欢迎的云原生监控方…

如何进行单元测试

前言单元测试是指对软件中最小可测单元进行检查和验证;c语言中单元指一个函数,java中指一个类。图形化软件中可以指一个窗口或者一个菜单。总的来说,单元就是认为规定最小的被测试模块。1.1单元测试对我们开发程序有什么好处首先是一个前端单…

react: input 输入框 中文onChange事件异常问题 对input输入进行防抖处理

当我们使用Input时,我们可能会遇到一个问题,比如需要对用户输入的内容进行搜索时,当用户处于中文输入时,明明没有对内容进行确认,为什么会触发了onChange事件呢?比如以下场景,中文一边输入另外一…

机器学习知识总结 —— 20.使用朴素贝叶斯进行数据分类

文章目录准备基础数据计算先验概率计算条件概率预测分布验证结果作为一种监督学习分类方法,在上一章中我们已经介绍过它的数理原理。现在我们开始来实现一个简单的朴素贝叶斯分类的算法,这样我们能更好的理解它是怎么运作的。 准备基础数据 首先还是有…

加密流量专栏总览

文章目录加密流量专栏1. 原理篇2. 模型篇3. 文章分类总结3.1 研究方向3.2 特征提取3.3 机器学习模型改进3.4 深度学习模型改进3.5 其他模型改进3.7 实时检测3.8 概念漂移检索论文的方法加密流量专栏 1. 原理篇 原理: 会话、流、数据包之间的关系。 流:…

【离线数仓-4-数据仓库设计-分层规划构建流程】

离线数仓-4-数据仓库设计-分层规划&构建流程离线数仓-4-数据仓库设计-分层规划&构建流程1.数据仓库分层规划2.数据仓库构建流程1.数据调研1.业务调研2.需求分析3.总结2.明确数据域3.构建业务总线矩阵&维度模型设计4.明确统计指标1.指标体系相关概念1.原子指标2.派生…

【渝偲医药】DSPE-PEG-RGD;磷脂聚乙二醇多肽试剂级简介

DSPE-PEG-RGD、 二硬脂酰基磷脂酰乙醇胺-聚乙二醇-多肽、磷脂PEG多肽 英文名称: 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine-PEG- RGD 溶剂:可溶解在水中和大多数有机溶剂中 外观:白色粉末 用途:用于链接带有链霉亲和素或其他的基团的分子 分子量(PEG ):2000、3400、…

那些开发过程中需要遵守的开发规范

入职公司三天,没干啥其他活,基本在配置本地环境和阅读相关文档。技术方面公司基本用的是主流的技术体系,入职后需要先阅读阿里的开发规范和其他的一些产研文档。今天整理一些平时需要关注的阿里规约和数据库开发规范,方便今后在开…

TatukGIS Developer Kernel for .NET

TatukGIS Developer Kernel for .NET 用于.NET的TatukGIS开发人员内核的强大功能: 打开、创建、编辑、保存和导出矢量、图片和网格的过程,包括类似于数据库的格式。 扩展属性、北箭头、比例和其他视觉控制也从TatukGIS编辑器/查看器商品中显示给用户开发…

Java基础系列(五): final关键字用法

一. 概述 final关键字代表最终,不可改变的. 常见有5种用法,我们来归纳总结一下: 1. 用来修饰一个类 2. 用来修饰一个方法 3. 用来修饰成员变量 4. 用来修饰局部变量 5. 用来修饰方法参数 二. final饰修类 如果声明一个类为final类, 那么这个类就是最终类,不能被继承 …

7 Python文件、文件夹、word及excel操作

0 建议学时和要求 4学时 掌握os和os.path模块对文件和文件夹操作的函数 掌握shutil模块对文件和文件夹操作的函数 掌握扩展库openpyxl对Excel文件的操作 1 文件的高级操作 1.1 文件的概念及分类 文本文件 文本文件可以使用记事本、gedit、ultraedit等字处理软件直接进行显…

ESP32设备驱动-DS1264数字温度传感器驱动

DS1264数字温度传感器驱动 1、DS1264介绍 DS1624 由两个独立的功能单元组成:一个 256 字节非易失性 E2 存储器和一个直接数字温度传感器。 非易失性存储器由 256 字节的 E2 存储器组成。 该存储器可用于存储用户希望的任何类型的信息。 这些内存位置通过 2 线串行总线访问。…