守恒律表示了物体中某些物理场量之间的关系,它可表述为:某一时刻
t
t
t,对于物理场量
Φ
\bold\Phi
Φ 在物体体积
v
v
v 上的物质积分,其时间变化率等于另一物理场量
Ψ
\bold\Psi
Ψ(源) 在该体积上的物质积分,与通过物体表面
∂
v
\partial v
∂v “流入”的物理量
π
\bold\pi
π(流) 的面积分之和。即
D
D
t
∫
v
ρ
Φ
d
v
=
∫
v
ρ
Ψ
d
v
+
∫
∂
v
π
(
N
⃗
)
d
S
Φ
(
x
⃗
,
t
)
,
Ψ
(
x
⃗
,
t
)
,
π
(
N
⃗
)
∈
T
r
(
V
)
\dfrac{D}{Dt}\int_v\rho\bold\Phi dv=\int_v\rho\bold\Psi dv+\int_{\partial v}\pi(\vec{N})dS\qquad\bold{\Phi}(\vec{x},t),\bold\Psi(\vec{x},t),\pi(\vec{N})\in\mathscr{T}_r(V)
DtD∫vρΦdv=∫vρΨdv+∫∂vπ(N)dSΦ(x,t),Ψ(x,t),π(N)∈Tr(V)
式中,假定流不仅依赖于位置坐标与时间,同时还依赖于物体表面的单位外法向
N
⃗
\vec{N}
N,故将其表示为
π
(
N
⃗
)
\pi(\vec{N})
π(N);
ρ
(
x
⃗
,
t
)
\rho(\vec{x},t)
ρ(x,t) 为非负标量,称作(质量)密度。
现考虑一个代表性物质点
A
\bold A
A,它在空间坐标系中的位矢为
x
⃗
\vec{x}
x,如图给出了点 A 处的坐标标架,过点 A 各坐标线的切向为协变基矢
g
⃗
i
(
i
=
1
,
2
,
3
)
\vec{g}_i(i=1,2,3)
gi(i=1,2,3),现考虑某单位法向量为
N
⃗
\vec{N}
N 的平面与三个局部协变基向量所在直线相截得到的四面体 ABCD,各面面积与单位法向量如图所示。显然有:
N
⃗
i
=
−
g
⃗
i
∣
g
⃗
i
∣
=
−
g
⃗
i
g
i
i
(
i
=
1
,
2
,
3
)
\vec{N}_i =-\dfrac{\vec{g}^i}{|\vec{g}^i|} =-\dfrac{\vec{g}^i}{\sqrt{g^{ii}}} \qquad(i=1,2,3)
Ni=−∣gi∣gi=−giigi(i=1,2,3)
由散度定理:
∯
∂
v
n
⃗
d
S
=
0
\oiint_{\partial v}\vec{n}dS=0
∬∂vndS=0
故,
N
⃗
△
S
+
∑
i
=
1
3
N
⃗
i
△
S
i
=
0
⟹
N
⃗
△
S
=
∑
i
=
1
3
(
g
⃗
i
g
i
i
△
S
i
)
⟹
△
S
i
=
△
S
g
i
i
(
N
⃗
⋅
g
⃗
i
)
=
△
S
g
i
i
N
i
(
不对
i
求和
)
≜
C
i
△
S
\begin{aligned} & \qquad\vec{N}\triangle S+\sum_{i=1}^3\vec{N}_i\triangle S_i=0 \\\\ &\Longrightarrow \vec{N}\triangle S=\sum_{i=1}^3\left(\dfrac{\vec{g}^i}{\sqrt{g^{ii}}}\triangle S_i\right) \\\\ &\begin{aligned} &\Longrightarrow \triangle S_i=\triangle S\sqrt{g^{ii}}(\vec{N}\cdot\vec{g}_i) \\\\ &\qquad\qquad=\triangle S\sqrt{g^{ii}}{N}_i\quad(不对i求和)\\\\ &\qquad\qquad\triangleq C_i\triangle S \end{aligned} \end{aligned}
N△S+i=1∑3Ni△Si=0⟹N△S=i=1∑3(giigi△Si)⟹△Si=△Sgii(N⋅gi)=△SgiiNi(不对i求和)≜Ci△S
式中,
N
i
N_i
Ni 为外法向
N
⃗
\vec{N}
N 的协变分量,对于固定的代表性物质点 A 及恒定的外法向
N
⃗
\vec{N}
N 而言,系数
C
i
C_i
Ci 为常数。
另外根据四面体与平行六面体间的体积关系,可将四面体 ABCD 的体积
△
v
\triangle v
△v 写作:
△
v
=
1
6
∣
(
A
B
——
⋅
g
1
⃗
g
11
×
A
C
——
⋅
g
2
⃗
g
22
)
⋅
A
D
——
⋅
g
3
⃗
g
33
∣
=
2
g
3
(
∏
i
=
1
3
g
i
i
)
A
B
——
⋅
A
C
——
2
A
B
——
⋅
A
D
——
2
A
C
——
⋅
A
D
——
2
=
2
g
3
(
∏
i
=
1
3
g
i
i
)
△
S
3
s
i
n
(
A
B
,
A
C
)
△
S
2
s
i
n
(
A
B
,
A
D
)
△
S
1
s
i
n
(
A
C
,
A
D
)
=
2
g
3
N
1
⋅
N
2
⋅
N
3
(
∏
i
=
1
3
g
i
i
)
⋅
s
i
n
(
A
B
,
A
C
)
⋅
s
i
n
(
A
B
,
A
D
)
⋅
s
i
n
(
A
C
,
A
D
)
(
△
S
)
3
≜
C
v
(
△
S
)
3
\begin{aligned} &\triangle v =\frac{1}{6}\left|\left(\dfrac{\overset{——}{AB}\cdot\vec{g_1}}{\sqrt{g_{11}}}\times\dfrac{\overset{——}{AC}\cdot\vec{g_2}}{\sqrt{g_{22}}}\right)\cdot\dfrac{\overset{——}{AD}\cdot\vec{g_3}}{\sqrt{g_{33}}}\right| \\\\ &\quad\ \ =\dfrac{\sqrt{2g}}{3\left(\prod\limits_{i=1}^3\sqrt{g_{ii}}\right)}\sqrt{\dfrac{\overset{——}{AB}\cdot\overset{——}{AC}}{2}\dfrac{\overset{——}{AB}\cdot\overset{——}{AD}}{2}\dfrac{\overset{——}{AC}\cdot\overset{——}{AD}}{2}} \\\\ &\quad\ \ =\dfrac{\sqrt{2g}}{3\left(\prod\limits_{i=1}^3\sqrt{g_{ii}}\right)}\sqrt{\dfrac{\triangle S_3}{sin({AB},{AC})}\dfrac{\triangle S_2}{sin({AB},{AD})}\dfrac{\triangle S_1}{sin({AC},{AD})}} \\\\ &\quad\ \ =\dfrac{\sqrt{2g}}{3}\sqrt{\dfrac{N_1\cdot N_2\cdot N_3}{\left(\prod\limits_{i=1}^3\sqrt{g_{ii}}\right)\cdot sin({AB},{AC})\cdot sin({AB},{AD})\cdot sin({AC},{AD})}}\sqrt{(\triangle S)^3} \\\\ &\quad\ \ \triangleq C_v\sqrt{(\triangle S)^3} \end{aligned}
△v=61
g11AB——⋅g1×g22AC——⋅g2
⋅g33AD——⋅g3
=3(i=1∏3gii)2g2AB——⋅AC——2AB——⋅AD——2AC——⋅AD—— =3(i=1∏3gii)2gsin(AB,AC)△S3sin(AB,AD)△S2sin(AC,AD)△S1 =32g(i=1∏3gii)⋅sin(AB,AC)⋅sin(AB,AD)⋅sin(AC,AD)N1⋅N2⋅N3(△S)3 ≜Cv(△S)3
对于固定的代表性物质点 A 及恒定的外法向
N
⃗
\vec{N}
N 而言,系数
C
v
C_v
Cv 为常数。将守恒律应用于上述四面体,并利用积分中值定理:
D
D
t
(
ρ
Φ
——
⋅
△
v
)
=
ρ
Ψ
——
⋅
△
v
+
[
π
ˉ
(
N
⃗
)
⋅
△
S
+
∑
i
=
1
3
π
ˉ
(
N
⃗
i
)
⋅
△
S
i
]
⟹
D
D
t
(
ρ
Φ
——
⋅
C
v
(
△
S
)
3
)
=
ρ
Ψ
——
⋅
C
v
(
△
S
)
3
+
[
π
ˉ
(
N
⃗
)
+
∑
i
=
1
3
π
ˉ
(
N
⃗
i
)
⋅
C
i
]
⋅
△
S
\begin{aligned} &\qquad\dfrac{D}{Dt}(\overset{——}{\rho\bold\Phi}\cdot\triangle v)=\overset{——}{\rho\bold\Psi}\cdot\triangle v+\left[\bar{\pi}(\vec{N})\cdot\triangle S+\sum_{i=1}^3\bar{\pi}(\vec{N}_i)\cdot\triangle S_i\right]\\\\ &\Longrightarrow \dfrac{D}{Dt}(\overset{——}{\rho\bold\Phi}\cdot C_v\sqrt{(\triangle S)^3})=\overset{——}{\rho\bold\Psi}\cdot C_v\sqrt{(\triangle S)^3}+\left[\bar{\pi}(\vec{N})+\sum_{i=1}^3\bar{\pi}(\vec{N}_i)\cdot C_i\right]\cdot\triangle S \end{aligned}
DtD(ρΦ——⋅△v)=ρΨ——⋅△v+[πˉ(N)⋅△S+i=1∑3πˉ(Ni)⋅△Si]⟹DtD(ρΦ——⋅Cv(△S)3)=ρΨ——⋅Cv(△S)3+[πˉ(N)+i=1∑3πˉ(Ni)⋅Ci]⋅△S
令法向为
N
⃗
\vec{N}
N 的平面趋近于 A 点,且该趋近过程中保持
N
⃗
\vec{N}
N 不变,那么有:
lim
△
S
→
0
D
D
t
(
ρ
Φ
——
⋅
C
v
(
△
S
)
3
⋅
1
△
S
)
=
lim
△
S
→
0
ρ
Ψ
——
⋅
C
v
(
△
S
)
3
⋅
1
△
S
+
lim
△
S
→
0
[
π
ˉ
(
N
⃗
)
+
∑
i
=
1
3
π
ˉ
(
N
⃗
i
)
⋅
C
i
]
(
C
i
,
C
v
∈
C
o
n
s
t
)
\lim_{\triangle S\rightarrow 0}\dfrac{D}{Dt}(\overset{——}{\rho\bold\Phi}\cdot C_v\sqrt{(\triangle S)^3}\cdot\dfrac{1}{\triangle S})=\lim_{\triangle S\rightarrow 0}\overset{——}{\rho\bold\Psi}\cdot C_v\sqrt{(\triangle S)^3}\cdot\dfrac{1}{\triangle S}+\lim_{\triangle S\rightarrow 0}\left[\bar{\pi}(\vec{N})+\sum_{i=1}^3\bar{\pi}(\vec{N}_i)\cdot C_i\right]\quad(C_i,C_v\in Const)
△S→0limDtD(ρΦ——⋅Cv(△S)3⋅△S1)=△S→0limρΨ——⋅Cv(△S)3⋅△S1+△S→0lim[πˉ(N)+i=1∑3πˉ(Ni)⋅Ci](Ci,Cv∈Const)
则:
lim
△
S
→
0
[
π
ˉ
(
N
⃗
)
+
∑
i
=
1
3
π
ˉ
(
N
⃗
i
)
⋅
C
i
]
=
0
\lim_{\triangle S\rightarrow 0}\left[\bar{\pi}(\vec{N})+\sum_{i=1}^3\bar{\pi}(\vec{N}_i)\cdot C_i\right]=0
△S→0lim[πˉ(N)+i=1∑3πˉ(Ni)⋅Ci]=0
即
π
A
(
N
⃗
)
=
−
∑
i
=
1
3
[
g
i
i
N
i
⋅
π
A
(
N
⃗
i
)
]
\pi_A(\vec{N})=-\sum_{i=1}^3\left[\sqrt{g^{ii}}{N}_i\cdot\pi_A(\vec{N}_i)\right]
πA(N)=−i=1∑3[giiNi⋅πA(Ni)]
由于代表性物质点 A 是任意选取的,故将下标 A 省去,写作
π
(
N
⃗
)
=
−
∑
i
=
1
3
[
N
i
g
i
i
⋅
π
(
N
⃗
i
)
]
⟹
π
[
∑
i
=
1
3
(
g
⃗
i
g
i
i
△
S
i
△
S
)
]
=
π
{
∑
i
=
1
3
[
−
g
⃗
i
g
i
i
⋅
(
−
N
i
g
i
i
)
]
}
=
∑
i
=
1
3
[
(
−
N
i
g
i
i
)
⋅
π
(
−
g
⃗
i
g
i
i
)
]
\begin{aligned} &\qquad \pi(\vec{N})=-\sum_{i=1}^3\left[{N}_i\sqrt{g^{ii}}\cdot\pi(\vec{N}_i)\right] \\\\ &\Longrightarrow \pi\left[\sum_{i=1}^3\left(\dfrac{\vec{g}^i}{\sqrt{g^{ii}}}\dfrac{\triangle S_i}{\triangle S}\right)\right] =\pi\left\{\sum_{i=1}^3\left[-\dfrac{\vec{g}^i}{\sqrt{g^{ii}}}\cdot\left(-{N}_i\sqrt{g^{ii}}\right)\right]\right\} =\sum_{i=1}^3\left[\left(-{N}_i\sqrt{g^{ii}}\right)\cdot\pi\left(-\dfrac{\vec{g}^i}{\sqrt{g^{ii}}}\right)\right] \end{aligned}
π(N)=−i=1∑3[Nigii⋅π(Ni)]⟹π[i=1∑3(giigi△S△Si)]=π{i=1∑3[−giigi⋅(−Nigii)]}=i=1∑3[(−Nigii)⋅π(−giigi)]
虽然,
N
⃗
\vec{N}
N 在求极限的过程中是不变的,但初始选择时它是任意的,结合上式可知:
π
(
N
⃗
)
\pi(\vec{N})
π(N) 将任意向量线性映射为
r
r
r 阶张量,故根据线性表示定理:
∃
Σ
∈
T
r
+
1
(
V
)
,
s
.
t
.
π
(
N
⃗
)
=
Σ
⋅
N
⃗
\exist\ \bold\Sigma\in\mathscr{T}_{r+1}(V)\ ,s.t.\ \pi(\vec{N})=\bold\Sigma\cdot\vec{N}
∃ Σ∈Tr+1(V) ,s.t. π(N)=Σ⋅N
那么,在流依赖于外法线的前提条件下,可将守恒律改写为:
D
D
t
∫
v
ρ
Φ
d
v
=
∫
v
ρ
Ψ
d
v
+
∫
∂
v
Σ
⋅
N
⃗
d
S
(
a
)
\dfrac{D}{Dt}\int_v\rho\bold\Phi dv=\int_v\rho\bold\Psi dv+\int_{\partial v}\bold\Sigma\cdot\vec{N}\ dS\qquad(a)
DtD∫vρΦdv=∫vρΨdv+∫∂vΣ⋅N dS(a)
∫
v
D
D
t
(
ρ
Φ
d
v
)
=
∫
v
(
ρ
Ψ
+
Σ
⋅
▽
)
d
v
(
b
)
\int_v\dfrac{D}{Dt}(\rho\bold\Phi dv)=\int_v(\rho\bold\Psi +\bold\Sigma\cdot\triangledown)\ dv\qquad(b)
∫vDtD(ρΦdv)=∫v(ρΨ+Σ⋅▽) dv(b)
式中,
Φ
(
x
⃗
,
t
)
,
Ψ
(
x
⃗
,
t
)
∈
T
r
(
V
)
\bold{\Phi}(\vec{x},t),\bold\Psi(\vec{x},t)\in\mathscr{T}_r(V)
Φ(x,t),Ψ(x,t)∈Tr(V);
Σ
∈
T
r
+
1
(
V
)
\bold\Sigma\in\mathscr{T}_{r+1}(V)
Σ∈Tr+1(V),且:
Σ
=
∑
i
=
1
3
[
g
i
i
⋅
π
(
g
⃗
i
g
i
i
)
⊗
g
⃗
i
]
\bold\Sigma=\sum_{i=1}^3\left[\sqrt{g^{ii}}\cdot\pi\left(\dfrac{\vec{g}^i}{\sqrt{g^{ii}}}\right)\otimes\vec{g}_i\right]
Σ=i=1∑3[gii⋅π(giigi)⊗gi]
另外将上式转化为参考构型下则有:
D
D
t
∫
v
0
ρ
Φ
J
d
v
0
=
∫
v
0
ρ
Ψ
J
d
v
0
+
∫
∂
v
0
Σ
⋅
J
F
−
T
⋅
0
N
⃗
d
S
0
(
c
)
\dfrac{D}{Dt}\int_{v_0}\rho\bold\Phi \mathscr{J}dv_0=\int_{v_0}\rho\bold\Psi \mathscr{J}dv_0+\int_{\partial v_0}\bold\Sigma\cdot\mathscr{J} \overset{-T}{\bold{F}}\cdot\vec{_0 N}dS_0\qquad(c)
DtD∫v0ρΦJdv0=∫v0ρΨJdv0+∫∂v0Σ⋅JF−T⋅0NdS0(c)