🚀write in front🚀
📜所属专栏:初阶数据结构
🛰️博客主页:睿睿的博客主页
🛰️代码仓库:🎉VS2022_C语言仓库
🎡您的点赞、关注、收藏、评论,是对我最大的激励和支持!!!
关注我,关注我,关注我,你们将会看到更多的优质内容!!
文章目录
- 前言:
- 1. 算法效率
- 1.1 如何衡量一个算法的好坏
- 1.2算法的复杂度
- 2.时间复杂度
- 2.1 时间复杂度的概念
- 2.2 大O的渐进表示法
- 2.3常见时间复杂度计算举例
- 实列1:
- 实列2:
- 实列3:
- 实列4:
- 实列5:
- 实列6:
- 实列7:
- 实列8:
- 总结:
前言:
从今天开始我们将进入一个全新的环节:数据结构的学习!学习数据结构,首先就要学习算法的效率。下面我就带大家先来了解一下时间复杂度这个概念!
1. 算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
2.时间复杂度
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度。
举个栗子:
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
上面的栗子在使用大O的渐进表示法以后,Func1的时间复杂度为O(N^2)
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3常见时间复杂度计算举例
实列1:
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为O(N)
经过计算发现运算最坏情况次数为:2N(M为常数,不影响结果)
实列2:
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为O(M)(M远大于N的时候)
或O(N)(N远大于M的时候)
经过计算发现运算最坏情况次数为:N+M
实列3:
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++k)
{
++count;
}
printf("%d\n", count);
}
时间复杂度为:O(1)
只要是常数,时间复杂度都为O(1)
实列4:
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )
时间复杂度为O(N)
通过解析内部函数我们可以发现,要找到字符串中的字符,最坏情况需要n(字符串长度)次。
实列5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
时间复杂度:O(N^2)
最好的情况是数组已经排好序,只用遍历一遍,O(N),
最坏的情况是数组没有排序,每一次都需要交换位置,O(N^2)
实列6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
while (begin < end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
begin = mid + 1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
时间复杂度为:O(logN)
这是一个典型的二分查找,通过计算我们可以得出最坏情况需要查找log2(n)次
实列7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if (0 == N)
return 1;
return Fac(N - 1) * N;
}
时间复杂度为O(N)
图解如下:
实列8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}
时间复杂度为O(2^N)
图解如下:通过等比数列求和去掉常数,得到时间复杂度
总结:
这就是时间复杂度的基本介绍!更新不易,辛苦各位小伙伴们动动小手,👍三连走一走💕💕 ~ ~ ~ 你们真的对我很重要!最后,本文仍有许多不足之处,欢迎各位认真读完文章的小伙伴们随时私信交流、批评指正!
专栏订阅:
每日一题
c语言学习
算法
智力题
初阶数据结构
更新不易,辛苦各位小伙伴们动动小手,👍三连走一走💕💕 ~ ~ ~ 你们真的对我很重要!最后,本文仍有许多不足之处,欢迎各位认真读完文章的小伙伴们随时私信交流、批评指正!