【数据结构】时间复杂度

news2024/11/24 9:52:30

在这里插入图片描述

🚀write in front🚀
📜所属专栏:初阶数据结构
🛰️博客主页:睿睿的博客主页
🛰️代码仓库:🎉VS2022_C语言仓库
🎡您的点赞、关注、收藏、评论,是对我最大的激励和支持!!!
关注我,关注我,关注我你们将会看到更多的优质内容!!

在这里插入图片描述

文章目录

  • 前言:
  • 1. 算法效率
    • 1.1 如何衡量一个算法的好坏
    • 1.2算法的复杂度
  • 2.时间复杂度
    • 2.1 时间复杂度的概念
    • 2.2 大O的渐进表示法
    • 2.3常见时间复杂度计算举例
      • 实列1:
      • 实列2:
      • 实列3:
      • 实列4:
      • 实列5:
      • 实列6:
      • 实列7:
      • 实列8:
  • 总结:

前言:

  从今天开始我们将进入一个全新的环节:数据结构的学习!学习数据结构,首先就要学习算法的效率。下面我就带大家先来了解一下时间复杂度这个概念!

1. 算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列

long long Fib(int N)
{
	if(N < 3)
		return 1;
	return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2算法的复杂度

 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度空间复杂度
 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间
 经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

2.时间复杂度

2.1 时间复杂度的概念

  时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度

举个栗子:

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里插入图片描述
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法

2.2 大O的渐进表示法

  大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

  上面的栗子在使用大O的渐进表示法以后,Func1的时间复杂度为O(N^2)

  通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

  另外有些算法的时间复杂度存在最好、平均和最坏情况:
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实列1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

时间复杂度为O(N)
经过计算发现运算最坏情况次数为:2N(M为常数,不影响结果)

实列2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

时间复杂度为O(M)(M远大于N的时候)
     或O(N)(N远大于M的时候)

经过计算发现运算最坏情况次数为:N+M

实列3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

时间复杂度为:O(1)
只要是常数,时间复杂度都为O(1)

实列4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )

时间复杂度为O(N)
通过解析内部函数我们可以发现,要找到字符串中的字符,最坏情况需要n(字符串长度)次。

在这里插入图片描述

实列5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

时间复杂度:O(N^2)
最好的情况是数组已经排好序,只用遍历一遍,O(N),
最坏的情况是数组没有排序,每一次都需要交换位置,O(N^2)

实列6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else
			return mid;
	}
	return -1;
}

时间复杂度为:O(logN)
这是一个典型的二分查找,通过计算我们可以得出最坏情况需要查找log2(n)次
在这里插入图片描述

实列7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N;
}

时间复杂度为O(N)
图解如下:
在这里插入图片描述

实列8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if (N < 3)
		return 1;
	return Fib(N - 1) + Fib(N - 2);
}

时间复杂度为O(2^N)
图解如下:通过等比数列求和去掉常数,得到时间复杂度
在这里插入图片描述

总结:

  这就是时间复杂度的基本介绍!更新不易,辛苦各位小伙伴们动动小手,👍三连走一走💕💕 ~ ~ ~ 你们真的对我很重要!最后,本文仍有许多不足之处,欢迎各位认真读完文章的小伙伴们随时私信交流、批评指正!

专栏订阅:
每日一题
c语言学习
算法
智力题
初阶数据结构
更新不易,辛苦各位小伙伴们动动小手,👍三连走一走💕💕 ~ ~ ~ 你们真的对我很重要!最后,本文仍有许多不足之处,欢迎各位认真读完文章的小伙伴们随时私信交流、批评指正!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/365704.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于数据分析和数据指标,企业还需要做什么?

数据虽然已经成为了各行各业对未来的共识&#xff0c;也切实成为了各领域企业的重要资产。但真正谈到发挥数据的价值&#xff0c;就必须从规模庞大的数据中找出需求的数据&#xff0c;然后进行利用。这个过程光是想想就知道很麻烦&#xff0c;更别提很多数据都是经常会用到的&a…

【STL】模拟实现vector

目录 1、基本成员变量 2、默认成员函数 构造函数 析构函数 拷贝构造函数 赋值运算符重载函数 3、容器访问相关函数接口 operator [ ]运算符重载 迭代器 范围for 4、vector容量和大小相关函数 size和capacity reserve扩容 resize swap交换数据 empty 5、修…

leaflet 设置右键菜单,配置相应的功能(090)

第090个 点击查看专栏目录 本示例的目的是介绍如何在vue+leaflet中设置右键菜单,配置相应的功能。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式示例源代码(共109行)安装插件相关API参考:专栏目标示例效果 配置方式 1)…

华为OD机试 C++ 实现 - 租车骑绿岛

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…

SpringMVC——基本操作

获取url中的参数 一般来说get请求中参数是这样的 127.0.0.1:8080/login?usernamesan&password123可以获取到下面两个参数 keyvalueusernamesanpassword123 但是事实上&#xff0c;还有一种url的参数的写法 127.0.0.1:8080/login/san/123这样的写法更像是一个直接获取网…

【蓝桥杯集训·每日一题】AcWing 2058. 笨拙的手指

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴哈希表秦九韶算法一、题目 1、原题链接 2058. 笨拙的手指 2、题目描述 奶牛贝茜正在学习如何在不同进制之间转换数字。 但是她总是犯错误&#xff0c;因为她无法轻易的用两…

求职一个月,收割12家offer,想给大家总结一下面试软件测试岗,一般问什么问题?

前言 下面是我根据工作这几年来的面试经验&#xff0c;加上之前收集的资料&#xff0c;整理出来350道软件测试工程师 常考的面试题。字节跳动、阿里、腾讯、百度、快手、美团等大厂常考的面试题&#xff0c;在文章里面都有 提到。 虽然这篇文章很长&#xff0c;但是绝对值得你…

【2023】Prometheus-相关知识点(面试点)

目录1.Prometheus1.1.什么是Prometheus1.2.Prometheus的工作流程1.3.Prometheus的组件有哪些1.4.Prometheus有什么特点1.5.Metric的几种类型&#xff1f;分别是什么&#xff1f;1.6.Prometheus的优点和缺点1.7.Prometheus怎么采集数据1.8.Prometheus怎么获取采集对象1.9.Promet…

产业安全公开课:2023年DDoS攻击趋势研判与企业防护新思路

2023年&#xff0c;全球数字化正在加速发展&#xff0c;网络安全是数字化发展的重要保障。与此同时&#xff0c;网络威胁日益加剧。其中&#xff0c;DDoS攻击作为网络安全的主要威胁之一&#xff0c;呈现出连年增长的态势&#xff0c;给企业业务稳定带来巨大挑战。2月21日&…

【数据结构与算法】顺序表增删查改的实现(动态版本+文件操作)附源码

目录 一.前言 二.顺序表 1.概念及结构 2.顺序表结构体的定义 3.初始化顺序表&#xff0c;销毁顺序表和打印 3.接口 a.尾插 SepListpushback 头插 SepListpushfront b.尾删 SepListpopback 头删 SepListpopfront c.查询 SepListsearch d.修改 SepListmodify 三…

搜索引擎 Elasticsearch 的三大坑

搜索引擎的坑 ES 搜索引擎系列文章汇总&#xff1a; 一、别只会搜日志了&#xff0c;求你懂点原理吧 二、ES 终于可以搜到”悟空哥“了&#xff01; 三、1W字&#xff5c;40 图&#xff5c;硬核 ES 实战 本文主要内容如下&#xff1a; 搜索引擎现在是用得越来越多了&#…

赛宁网安“网络安全卓越中心”:立足科技创新 推动网安产业高质量发展

​​2月22日上午&#xff0c;网络安全卓越中心CPCOE——圆桌论坛活动在南京召开。本次论坛由南京未来科技城主办&#xff0c;南京赛宁信息技术有限公司承办。论坛上&#xff0c;江苏省科协副主席、南京理工大学教授李千目&#xff0c;江苏省互联网协会副理事长兼秘书长刘湘生&a…

【Pytorch学习】获取当前的学习率Learning Rate(lr)

optimizer.state_dict()[param_groups][0][lr]from&#xff1a; https://blog.csdn.net/ftimes/article/details/120975402 PyTorch可视化动态调整学习率lr_scheduler&#xff1a;https://blog.csdn.net/ayiya_Oese/article/details/120704261 或者&#xff1a;scheduler.get_…

谷歌留痕代发技术指南_谷歌留痕怎么霸屏的?

本文主要分享谷歌留痕技术的一些常见问题&#xff0c;霸屏的原理是什么。 本文由光算创作&#xff0c;有可能会被修改和剽窃&#xff0c;我们佛系对待这种行为吧。 谷歌留痕也叫谷歌搜索留痕&#xff0c;那么谷歌搜索留痕的霸屏原理是什么&#xff1f; 答案是&#xff1a;利…

如何做好APP性能测试?

随着智能化生活的推进&#xff0c;我们生活中不可避免的要用到很多程序app。有的APP性能使用感很好&#xff0c;用户都愿意下载使用&#xff0c;而有的APP总是出现卡顿或网络延迟的情况&#xff0c;那必然就降低了用户的好感。所以APP性能测试对于软件开发方来说至关重要&#…

【Android视频号④ 问题总结】

这节坑比较多~ 差点没把我给整死&#xff01;&#xff01;&#xff01; 环境介绍 首先我调试都是root过的真机&#xff0c;但是生产环境都是没有Root的云机&#xff0c;属于自己改的Rom框架也不是XP或LSP 是技术人员利用Xposed源码改的框架 问题&解决 模块源码更改 这…

Leetcode第235题二叉搜索树的最近公共祖先|C语言

struct TreeNode* lowestCommonAncestor(struct TreeNode* root, struct TreeNode* p, struct TreeNode* q) {if(root->val>p->val&&root->val<q->val)return root;//若p结点的值<q结点的值&#xff0c;而根节点的值位于两者之间&#xff0c;说明…

Java StringBuffer StringBuilder,超详细整理,适合新手入门

目录 一、StringBuffer和StringBuilder的区别是什么&#xff1f; 二、StringBuffer的示例 三、StringBuilder的示例 四、为什么StringBuffer和StringBuilder比String更适合在循环中使用&#xff1f; 五、如何将String对象转换为StringBuilder或StringBuffer对象&#xff1…

论文投稿指南——中文核心期刊推荐(综合性经济科学)

【前言】 &#x1f680; 想发论文怎么办&#xff1f;手把手教你论文如何投稿&#xff01;那么&#xff0c;首先要搞懂投稿目标——论文期刊 &#x1f384; 在期刊论文的分布中&#xff0c;存在一种普遍现象&#xff1a;即对于某一特定的学科或专业来说&#xff0c;少数期刊所含…

常见的排序算法 | 直接插入排序 | 希尔排序 | 选择排序 | 堆排序 | 冒泡排序 | 快速排序 | 归并排序 |(详解,附动图,代码)

思维导图&#xff1a; 一.插入排序 1.直接插入排序&#xff08;InsertSort&#xff09; ①手机通讯录时时刻刻都是有序的&#xff0c;新增一个电话号码时&#xff0c;就是使用插入排序的方法将其插入原有的有序序列。 ②打扑克 步骤&#xff1a; ①如果一个序列只有一个数&am…