ChatGPT 编写模式:如何高效地将思维框架赋予 AI ?

news2025/1/16 3:42:10

如何理解 Prompt ?

0f3d27c1a62c292105b3ec516d62d9a6.png

Prompt Enginneering

prompt 通常指的是一个输入的文本段落或短语,作为生成模型输出的起点或引导。prompt 可以是一个问题、一段文字描述、一段对话或任何形式的文本输入,模型会基于 prompt 所提供的上下文和语义信息,生成相应的输出文本。

举个例子,对于一个语言模型,prompt 可以是 "The cat sat on the",模型可以通过对接下来的词语进行预测,生成类似于 "mat"、"chair"、"sofa" 等不同的输出:

d3695d99a371752b39f822614d6df853.png

The Cat

上图为 Stable Diffusion 生成 (Prompt: The cat sat on the , Steps: 30, Sampler: Euler a, CFG scale: 7, Seed: 234310862, Size: 512x512, Model hash: d8722b4a4d, Model: neverendingDreamNED_bakedVae)

Prompt 在人工智能语言生成领域中扮演着重要的角色,因为它可以帮助模型更好地理解用户意图,并生成更准确、有意义的文本内容。诸如于如下的 prompt

women back view without face, flowing dress, edge of the sea, backview, back turned to the camera, upon the glow of the setting sun, sun below the horizon, golden light over the water, hair sways gently, Chinese style clothes, black hair,

可以在 Stable Diffusion 生成图片(配置了 negative prompt):

0652b5a00fb3a992c460b0272f9593da.png

所以,质量看上去不错,但是可能不是你想要的。在 ChatGPT 则可以生成文本,质量上也是相似的,但是对于 AI 输出的文本来说,质量并没有这么直观。

应用好 Prompt 的核心思想:概念与类比

开始之前,可以看一下这个问题示例:

  1. 设计模式的要素是哪些?

  2. 对于 AI 领域的 prompt 编写来说,我们通常使用的模式有哪些?

  3. 能将 AI 领域的 prompt 常见的设计模式用 "设计模式要素" 的格式一一表达吗?

核心思想,将设计模式要素作为一个概念,让 AI 类比到 prompt 里的模式。详细见:

  1. design-pattern.analogy

  2. design-pattern.analogy2

当然了,类比和定义概念不一定都会成功。

基础模式

四种基础模式:

  • By example (示例模式):在这种模式下,我们给模型提供一些示例文本,模型需要生成与示例文本类似的文本。这种模式通常用于生成类似于给定示例的文本,例如自动生成电子邮件、产品描述、新闻报道等。示例文本可以是单个句子或多个段落,具体取决于任务的要求。

  • By instruction template (指令模板):在这种模式下,我们给模型提供一些明确的指令,模型需要根据这些指令生成文本。这种模式通常用于生成类似于技术说明书、操作手册等需要明确指令的文本。指令可以是单个句子或多个段落,具体取决于任务的要求。

  • By specific (特定指令):在这种模式下,我们给模型提供一些特定信息,例如问题或关键词,模型需要生成与这些信息相关的文本。这种模式通常用于生成答案、解释或推荐等。特定信息可以是单个问题或多个关键词,具体取决于任务的要求。

  • By proxy(代理模式):在这种模式下,可以充当了一个代理,代表某个实体(例如人、角色、机器人等)进行操作或交互。代理模式的核心思想是引入一个中介对象来控制对实际对象的访问,从而实现一定程度上的隔离和保护。诸如于在 ChatGPT 中,"act as xxx" 可以让 ChatGPT 充当一个代理,扮演某个角色或实体的身份,以此来处理与该角色或实体相关的任务或请求。

By specific

a0bc27a041c7a0623c1c6e0e056c2546.png

Prompt Enginneering

在这种模式下,我们给模型提供一些示例文本,模型需要生成与示例文本类似的文本。这种模式通常用于生成类似于给定示例的文本,例如自动生成电子邮件、产品描述、新闻报道等。示例文本可以是单个句子或多个段落,具体取决于任务的要求。

如 翻译、 告诉我,以我们的开头来说:

  • 定义一下 prompt 工程

类似的场景还可以有:

  • 翻译一下:永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。

  • 转为现代汉语:永和九年,岁在癸丑,暮春之初,会于会稽山阴之兰亭,修禊事也。

对应的,还有一系列的子模式

子模式

如我们通过下面的 prompt 转换了 ChatGPT 输出的子模式:

转化为 markdown 的 """ markdown {}""" 表格形式,其中的字段为英语模式、中文、简述、示例。

表格示例:

8ad76eb574e73a0b295cf5ebd1a12942.jpeg

By Instruction Template

d84ef1055ac815a25ea8caf89213eab5.png

Instruction

在这种模式下,我们给模型提供一些明确的指令,模型需要根据这些指令生成文本。这种模式通常用于生成类似于技术说明书、操作手册等需要明确指令的文本。指令可以是单个句子或多个段落,具体取决于任务的要求。

如下是一个示例:

使用 STAR 原则与下面的格式总结一下这段话:
"""
最近几天,因为工作 + 兴趣的原则,我在研究用 text 2 image 来展示如何演进 prompt、用 text 2 article 来展示充足 prompt 的优点、结合 GitHub Copliot 来实现 prompt 完成工作。然后,我在本地部署了一个 Stable Diffusion、使用 ChatGPT 写作展示 text 2 article、在 IDEA 中使用 GitHub Copilot。最后,得到了多篇文章和好多的文章阅读量、几个 Jupyter 代码段、以及一些经验。
"""
情境(Situation):
任务(Task): <comma_separated_list_of_task>
行动(Action): -||-
结果(Result): -||-

输出文本时要注意中英文之间插入空格,留出间隔,诸如于 """Hello 你好""",用这种方式输出一下刚才的文本:

情境(Situation): 最近几天,在工作和兴趣的驱动下,研究如何使用 text 2 image 和 text 2 article 展示 prompt 演进以及结合 GitHub Copliot 来完成工作。
任务(Task):
研究如何使用 text 2 image 展示 prompt 的演进过程
研究如何使用 text 2 article 展示 prompt 的优点
结合 GitHub Copliot 来实现 prompt 完成工作
行动(Action):
本地部署了一个稳定的 Diffusion 模型
使用 ChatGPT 撰写文章来展示 text 2 article 的效果
在 IDEA 中使用 GitHub Copilot
结果(Result):
得到了多篇文章和很多的文章阅读量
获得了几个 Jupyter 代码段以及相关经验

By proxy

9cdb8392530d480adff7f1a1cdc332fe.png

Proxy

Proxy 模式是指用户可以要求 ChatGPT 以特定的身份、角色或者身份扮演某个特定的人、角色或对象来生成回答。这种模式通常用于模拟某个特定人物的语言风格和语境,生成特定情境下的对话、回答或其他形式的文本。

例子 1:公司客服

当使用 ChatGPT 来代替某个人或实体时,可以使用 by proxy 模式。

例如,可以使用以下 prompt 提问 ChatGPT 代替某个公司的客服:

我是一家餐饮公司的客服,有顾客反馈说我们的菜品质量有问题,我们该怎么处理呢?

在这种情况下,ChatGPT 会扮演客服的角色,并根据提示来回答,从而帮助公司解决问题。ChatGPT 可以使用类似以下的方式来回答:

您好,很抱歉听到您的反馈。我们将会仔细审核您的反馈,并尽快采取相应措施来解决这个问题。为此,我们需要更多的信息来进一步了解您的反馈,包括哪些菜品有问题,具体问题是什么等。请问您可以提供更多的信息吗?

例子 2:终端计算机

这种方式可以通过让 ChatGPT 扮演某个实体的角色,例如客服、销售代表等等,来帮助用户解决问题。

在 Awesome ChatGPT Prompts 中:

Human: Act as a Linux Terminal

Robot:

ChatGPT: I want you to act as a linux terminal. I will type commands and you will reply with what the terminal should show. I want you to only reply with the terminal output inside one unique code block, and nothing else. do not write explanations. do not type commands unless I instruct you to do so. When I need to tell you something in English, I will do so by putting text inside curly brackets {like this}. My first command is pwd

By demonstration

在这种模式下,我们给模型提供一些特定信息,例如问题或关键词,模型需要生成与这些信息相关的文本。这种模式通常用于生成答案、解释或推荐等。特定信息可以是单个问题或多个关键词,具体取决于任务的要求。

示例:

任务表述 颜色代表了温度
例子1 绿色代表寒冷
例子2 蓝色代表寒冷
例子3 红色代表温暖
例子4 黄色代表温暖
执行 橙色代表什么
例子 2:

478a73e5c77c0c24a0cc43c625095d01.png

上图为 Cohere AI 官网的示例图,对应的聊天记录如下:

English: Writing about language models is fun.
Roish: Writingro aboutro languagero modelsro isro funro.
English: The weather is lovely!
Roish:

增强 Prompt

再生成模式

当我们无法确定我们的 prompt 是否准确,便可以通过 AI 来帮我们丰富 prompt 。如我在:基于编程、绘画、写作的 AI 探索与总结 的例了一样

  • phodal: 我想写一段话描述一张照片,帮我美化一下:一年轻女子穿着裙子,背对着镜头,在海边看着日落,太阳已经到地平线下面了,她的头发在风中飘动。

  • ChatGPT: 这张照片中的场景令人心醉,一位年轻女子穿着一条裙子,站在海边,背对着镜头,凝视着地平线下的夕阳。太阳已经沉入了海面,一片金黄色的光芒在海面上弥漫,照亮了整片海洋,仿佛这个时刻被定格在了时间的某个角落里。女子的头发随着微风轻轻飘动,轮廓被余晖映照得柔和而温暖。她的目光凝视着远方,仿佛在思考着生命的意义和无尽的未来。这张照片中蕴含着一种深刻的内涵,让人感受到时间和自然的力量,也让人思考着自己在这个宏大而美丽的世界中的角色和意义。

再去除掉不合适的词,进行润色,就可以再创作:

  • phodal:翻译成英语

然后再提炼直至扔至 Stable Diffusion 中:

women back view without face, flowing dress, edge of the sea, backview, back turned to the camera, upon the glow of the setting sun, sun below the horizon, golden light over the water, hair sways gently, Chinese style clothes, black hair,

而后,根据图片的结果,我们再反复修改。

控线模式

TODO:这里需要给出更精准的定义,如何让 ChatGPT 做到?

在没有推出 ControlNet,对于一个 Stable Diffusion 玩家,它需要反复地吟唱咒语,才能获取到满意的图案。

在有了 ControlNet 之后,我们可以创建一个 Openpose,或者是导入图片从图片生成 pose,相当于是给机器一个示例,而后生成的图片就会有令人满意的姿势:

ee89ce4b84c6e1943fa5bca84dc45d83.png

在 GitHub Copilot,我们可以通过设置输入和输出,结合函数名三个要素,Copilot 就能生成大致准确的代码:

GitHub Copilot 示例

而在必要的情况下,添加一下注释就能更完整了:

fun listAllDirInDir(dir: String): List<File> {
// ignore hidden files
}

生成的代码会更贴近我们的需求。

拆解

对于复杂问题,ChaGPT 无法一次性输出全部内容,需要进行拆解。

已知问题:ChatGPT 当前版本会丢失上下文。

我们来定义一下 DDD 游戏的步骤,一共有 6 个步骤,步骤如下:
"""
第一步. 拆解场景。分析特定领域的所有商业活动,并将其拆解出每个场景。
第二步. 场景过程分析。选定一个场景,并使用 "{名词}已{动词}" 的形式描述过程中所有发生的事件,其中的名词是过程中的实体,其中的动词是实体相关的行为。
第三步. 针对场景建模。基于统一语言和拆解出的场景进行建模,以实现 DDD 设计与代码实现的双向绑定。
第四步. 持续建模。回到第一步,选择未完成的场景。你要重复第一到第四步,直到所有的场景完成。
第五步. 围绕模型生成子域。对模型进行分类,以划定不同的子域,需要列出所有的模型包含英语翻译。
第六步. API 生成。对于每一个子域,生成其对应的 RESTful API,并以表格的形式展现这些 API。
"""
需要注意的是,当我说 """ddd 第 {} 步: {}""" 则表示进行第几步的分析,如 """ddd 第一步: 博客系统""" 表示只对博客系统进行 DDD 第一步分析。我发的是 """ddd: {}""",则表示按 6 个步骤分析:
明白这个游戏怎么玩了吗?

完整过程见:DDD Sample

概念模式集

概念对齐

如在 ChatGPT 中对于自举的理解是不符合我们这里的需求:

b87ab10ee78813f6439825f0c583341d.png

Bootstrap

第一步,定义

phodal:自举是指就编译器可以自行编译自己的编译器。实现方法就是这个编译器的作者用这个语言的一些特性来编写编译器并在该编译器中支持这些自己使用到的特性。

第二步,试探

phodal:将自举应用在游戏领域,应该是怎样的?

第三步,确认理解:

那么,抽象一下我们新定义的自举?

1ee8b9e164a2ab0f41451bca8f042415.png

总结

最后一问:

84f6b1e4a5b9c7564da3b0aaeeafbbad.png
自举

PS:mmp,他一定是故意的。

类比模式集(待定)

该模式集关注于如何让 AI 再学习理解新的内容,生成内容?

a12ddac223050e64ae4881904e5ea4c8.png

模板方法

模板方法模式是一种行为型模式,它定义了一个操作中的算法骨架,将某些步骤延迟到子类中实现,从而使得子类可以在不改变算法结构的情况下重新定义算法中的某些步骤。

在接下来的例子中,我们会创建一个 muji 游戏中。在游戏的实现可以分为多个步骤,例如初始化游戏、生成随机数、获取用户输入、计算得分等等,而这些步骤可以通过模板方法模式来进行实现。

我们来玩一个编程游戏名为 wula,包含五个步骤:
第一步. 问题分析:每一轮游戏,你将看到一个以 "wula:" 开头的问题,你需要分析这个问题并简单介绍一下通常解决这个问题的方法。
第二步. 代码编写:你需要用 JavaScript 编写解决这个问题的代码,并输出对应的代码,并介绍一下你的代码(不少于 200 字)。
第三步. 代码执行:你需要作为 JavaScript Console 执行第二步写的代码,如果没有给出测试数据,你需要自己随机生成测试数据,并将这些数据输入到代码中进行计算。
第四步. 错误处理:如果你的代码存在错误或无法正常执行,你需要输出错误,并回到第二步重新开始游戏,直到你的代码能够正常工作。
第五步. 总结:你需要用不少于 100 字左右总结一下这个问题,以及你的解决方案,让其他人可以简单了解这个问题及其解决方法。
示例如下:
"""
wula: 头共10,足共28,鸡兔各几只?
简介:这是一个鸡兔同笼问题,{},
## 鸡兔同笼
// 计算鸡兔数量的函数
function calcAnimals(heads, legs) {
const rabbitCount = (legs - 2 * heads) / 2;
const chickenCount = heads - rabbitCount;
return {"chicken": chickenCount, "rabbit": rabbitCount};
}
// 计算鸡兔数量
const result = calcAnimals(10, 28);
// 输出结果
console.log(result);
代码的输出结果是:{}
## 总结
{}
"""
明白这个游戏怎么玩了吗?

在这个游戏里,我们结合了几种不同的模式:

  1. Instruction:让 ChatGPT 创建了一个名为 wula 的游戏,并定义了游戏的步骤。

  2. Specific:让 ChatGPT 用 JavaScript 编写一个程序

  3. Proxy:让 ChatGPT 作为 JavaScript Console 执行程序,并返回结果。

  4. Specific:让 ChatGPT 做总结

  5. Demonstration:提供了一个示例,让 ChatGPT 理解游戏的步骤。

自举模式

自举的核心思想是利用一组基础工具和材料来构建和生成一个新的工具或系统,从而逐步替代掉原有的基础工具和材料。在这个过程中,新的工具或系统会逐渐变得更为高效和强大,从而实现对原有基础工具和材料的完全替代。

对于一个设计模式来说,它的大纲一般是如下的格式,你能用自举模式做个示例吗?
"""
├── 背景
│ └── 引发设计问题的设计情形
├── 问题
│ └── 在特定场景下反复出现的一系列作用力
└── 解决方案
└── 平衡这些作用力的配置
├── 结构(包含组件和组件之间的关系
└── 运行阶段行为
"""

再看

> wula:创作一个新游戏名为 muji,并解释一下这个游戏:"""类似于 wula,可以做简单的图形计算,如体积、面积等。这个游戏还能把解决过程解释清楚,拥有有可运行的 Python 代码,最后的输出结果是一篇文章。"""

65ddd0f4c7e2d0daf907ed52be1049fc.png

Muji Sample

其它

人类如何思考问题?

人类相对于其他动物更擅长于类比、概念抽象、符号化等高级认知活动,这些认知活动可以帮助人类在面对新问题时,从已有的知识和经验中找到相似的部分,快速理解和解决新问题。

而对于机器来说,机器学习算法通过大量的数据和计算,学习到数据中的规律和模式,并将这些规律和模式应用到新的数据中,从而实现预测和决策等功能。例如,机器学习算法可以通过大量的图像数据学习到图像的特征,并在新的图像中识别出相应的物体;也可以通过大量的自然语言数据学习到语言的规律,从而生成自然语言文本。

欢迎阅读原文,一起共创更多的模式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/365330.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

现有安全技术

现有的安全技术 防火墙技术 数据机密性技术 防火墙技术比较静态地保护网络支付涉及的客户端网络商家网络、金融专用网络等网络级的安全&#xff0c;数据传输过程中的安全性则需要数据机密性技术进一步给以保护 我们将源信息称为明文。为了保护明文&#xff0c;将其通过某种…

LMR23630APQDRRTQ1应用INA2181A1QDGSRQ1电流检测放大器电路图

LMR23630/LMR23630-Q1 SIMPLE SWITCHER降压转换器是易于使用的36V、3A同步降压稳压器。该器件的宽输入电压范围为 4.5V 至 36V&#xff0c;适用于调节从工业到汽车等各类应用中非稳压电源的电源调理。采用了峰值电流模式控制&#xff0c;以实现对环路补偿和逐周期电流限制的简单…

Docker 容器命令 和安装各种镜像环境

CentOS安装Docker 1.1.卸载&#xff08;可选&#xff09; 如果之前安装过旧版本的Docker&#xff0c;可以使用下面命令卸载&#xff1a; yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotat…

Qt-FFmpeg开发-保存视频流裸流(11)

Qt-FFmpeg开发-保存视频流裸流&#x1f4c0; 文章目录Qt-FFmpeg开发-保存视频流裸流&#x1f4c0;1、概述&#x1f4f8;2、实现效果&#x1f4bd;3、FFmpeg保存裸流代码流程&#x1f4a1;4、主要代码&#x1f50d;5、完整源代码&#x1f4d1;更多精彩内容&#x1f449;个人内容…

【HTML】我的花儿我做主~ 指定花瓣的数量,生成花朵~

效果图 前言&#xff08;赛时灵感&#xff09; 在比赛开始前&#xff0c;就一直没有灵感&#xff0c;不知道参与哪个赛道。也还不知道用啥去做。 直到比赛开始&#xff0c;还是没想到。 最后在比赛快要结束的第五天三更半夜的时候&#xff1b; 突然想到&#xff0c;既然要浪漫&…

每日学术速递2.23

Subjects: Robotics 1.On discrete symmetries of robotics systems: A group-theoretic and data-driven analysis ​ 标题&#xff1a;关于机器人系统的离散对称性&#xff1a;群论和数据驱动分析 作者&#xff1a;Daniel Ordonez-Apraez, Mario Martin, Antonio Agudo, F…

python中的取整、四舍五入和输出小数点后n位

各种取整 1.int是向下取整 2.math.ceil(num)是向上取整 3.math.floor(num)是向下取整 4.round(num)一般情况下是四舍五入取整&#xff08;round毛病多&#xff09; 四舍五入 1.round()可以四舍五入 2.int()也可以 这样写&#xff08;数后面0.5&#xff09;&#xff1a…

Python 爬虫通用代码框架代码示例

刚开始入门学习python爬虫会遇到各种各样的问题&#xff0c;如果以当时的学识想必处理起来也十分困难&#xff0c;那么&#xff0c;如果你拥有良好的编程习惯会让你轻松很多。 当我们在使用Requests库时经常遇到的问题无非是网络问题&#xff0c;连接的超时问题&#xff0c;或…

设计模式C++实现25:解释器模式(Interpreter)

部分内容参考大话设计模式第27章&#xff1b;本实验通过C语言实现。 一 基本原理 意图&#xff1a;给定一个语言&#xff0c;定义其文法的一种表示&#xff0c;并定义一个解释器&#xff0c;这个解释器使用该表示来解释语言中的句子。 上下文&#xff1a;如果业务规则频繁变…

Netty核心组件创建源码浅析

pipeline&#xff0c;Handler&#xff0c; HandlerContext创建源码剖析 源码解析目标 Netty中的ChannelPipeline&#xff0c;ChannelHandler和ChannelHandlerContext是核心组件&#xff0c;从源码解析来分析 Netty是如何设计三个核心组件分析Netty是如何创建和协调三个组件三…

LQB05 数码管动态扫描,显示字符串

1、蓝桥杯51单片机开发板的数码管是共阳数码管&#xff1b; 需要注意段码表的推导。 掌握推导段码表。 2、stcisp软件的数码管代码&#xff0c;是共阴的模式&#xff0c;注意取反的话&#xff0c;如何实现&#xff1f; 3、定时器动态扫描的思路&#xff1b; 4、注意动态扫描的时…

golang入门笔记——测试

测试类型&#xff1a; 单元测试&#xff1a; 规则&#xff1a; 1.所有测试文件以_test.go结尾 2.func Testxxx&#xff08;*testing.T&#xff09; 3.初始化逻辑放到TestMain中 运行&#xff1a; go test [flags][packages]Go语言中的测试依赖go test命令。 go test命令是一…

(考研湖科大教书匠计算机网络)第六章应用层-第四节:域名系统DNS

获取pdf&#xff1a;密码7281专栏目录首页&#xff1a;【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一&#xff1a;DNS概述二&#xff1a;层次域名结构&#xff08;1&#xff09;概述&#xff08;2&#xff09;顶级域名分类&#xff08;3&#xff09;因特网命名空…

「SAP」ABAP模块学习需要了解什么?快收下这份ABAP技术栈指南【附技能树】

&#x1f482;作者简介&#xff1a; THUNDER王&#xff0c;一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学会计专业大二本科在读&#xff0c;阿里云社区专家博主&#xff0c;华为云社区云享专家&#xff0c;CSDN SAP应用技术领域新兴创作者。   在学习工…

1. MacOs Dart环境安装

前置材料&#xff1a;需要安装dart的Mac设备, 一颗会用搜索引擎的聪明大脑一步步讲一下homebrew的安装流程我个人安装时遇到的情况 大家做个参考 如果你遇到的问题和我的不一样可以来这里 homebrew快速安装指引 可入群咨询首先, 我其实是安装过homebrew的网上常见的dart安装命令…

2003 -Cant connect to MySql server on IP地址 (10060)----在docker安装的MySQL连接阿里云服务器

MySQL配置 这个问题是因为在数据库服务器中的mysql数据库中的user的表中没有权限(也可以说没有用户)&#xff0c;下面将记录我遇到问题的过程及解决的方法。 在搭建完LNMP环境后用Navicate连接出错 遇到这个问题首先到mysql所在的服务器上用连接进行处理 0、docker exec -it m…

界面控件DevExpress WinForm——轻松构建类Visual Studio UI(二)

DevExpress WinForm拥有180组件和UI库&#xff0c;能为Windows Forms平台创建具有影响力的业务解决方案。DevExpress WinForm能完美构建流畅、美观且易于使用的应用程序&#xff0c;无论是Office风格的界面&#xff0c;还是分析处理大批量的业务数据&#xff0c;它都能轻松胜任…

嵌入式常用知识

12、并发和并行的区别&#xff1f; 最本质的区别就是&#xff1a;并发是轮流处理多个任务&#xff0c;并行是同时处理多个任务。 你吃饭吃到一半&#xff0c;电话来了&#xff0c;你一直到吃完了以后才去接&#xff0c;这就说明你不支持并发也不支持并行。 你吃饭吃到一半&…

推荐5款实用小工具,第五款更是小白最爱

作为一个黑科技软件爱好者&#xff0c;电脑里肯定是不会缺少这方面的东西&#xff0c;今天的5款实用小工具闪亮登场了。 1.磁盘空间分析——SpcaeSniffer SpcaeSniffer是一款可视化硬盘空间占用布局大小的查询工具&#xff0c;软件体积小巧&#xff0c;使用简单。软件可对所需…

Android Studio翻译插件推介(Translation)

前言 Android Studio翻译插件适合英语水平不太好的程序员&#xff08;比如&#xff1a;我&#xff09;&#xff0c;最常用的翻译插件Translation和AndroidLocalize&#xff0c;本文主要讲解Translation&#xff0c;亲测可用。 先看看效果&#xff1a;这里是Android的API,任意选…