你知道这几种常见的JVM调优场景吗?

news2024/11/26 21:43:58

看此文前需已了解了运行时的数据区域和常用的垃圾回收算法,也了解了Hotspot支持的垃圾回收器。

一、cpu占用过高

cpu占用过高要分情况讨论,是不是业务上在搞活动,突然有大批的流量进来,而且活动结束后cpu占用率就下降了,如果是这种情况其实可以不用太关心,因为请求越多,需要处理的线程数越多,这是正常的现象。

话说回来,如果你的服务器配置本身就差,cpu也只有一个核心,这种情况,稍微多一点流量就真的能够把你的cpu资源耗尽,这时应该考虑先把配置提升吧。

第二种情况,cpu占用率长期过高,这种情况下可能是你的程序有那种循环次数超级多的代码,甚至是出现死循环了。排查步骤如下:

(1)用top命令查看cpu占用情况

这样就可以定位出cpu过高的进程。在linux下,top命令获得的进程号和jps工具获得的vmid是相同的:

 

(2)用top -Hp命令查看线程的情况

可以看到是线程id为7287这个线程一直在占用cpu

(3)把线程号转换为16进制

[root@localhost ~]# printf "%x" 7287
1c77

记下这个16进制的数字,下面我们要用

(4)用jstack工具查看线程栈情况

[root@localhost ~]# jstack 7268 | grep 1c77 -A 10
"http-nio-8080-exec-2" #16 daemon prio=5 os_prio=0 tid=0x00007fb66ce81000 nid=0x1c77 runnable [0x00007fb639ab9000]
   java.lang.Thread.State: RUNNABLE
 at com.spareyaya.jvm.service.EndlessLoopService.service(EndlessLoopService.java:19)
 at com.spareyaya.jvm.controller.JVMController.endlessLoop(JVMController.java:30)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:190)
 at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:138)
 at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:105)

通过jstack工具输出现在的线程栈,再通过grep命令结合上一步拿到的线程16进制的id定位到这个线程的运行情况,其中jstack后面的7268是第(1)步定位到的进程号,grep后面的是(2)、(3)步定位到的线程号。

从输出结果可以看到这个线程处于运行状态,在执行com.spareyaya.jvm.service.EndlessLoopService.service这个方法,代码行号是19行,这样就可以去到代码的19行,找到其所在的代码块,看看是不是处于循环中,这样就定位到了问题。

二、死锁

死锁并没有第一种场景那么明显,web应用肯定是多线程的程序,它服务于多个请求,程序发生死锁后,死锁的线程处于等待状态(WAITINGTIMED_WAITING),等待状态的线程不占用cpu,消耗的内存也很有限,而表现上可能是请求没法进行,最后超时了。在死锁情况不多的时候,这种情况不容易被发现。

可以使用jstack工具来查看

(1)jps查看java进程

[root@localhost ~]# jps -l
8737 sun.tools.jps.Jps
8682 jvm-0.0.1-SNAPSHOT.jar

(2)jstack查看死锁问题

由于web应用往往会有很多工作线程,特别是在高并发的情况下线程数更多,于是这个命令的输出内容会十分多。jstack最大的好处就是会把产生死锁的信息(包含是什么线程产生的)输出到最后,所以我们只需要看最后的内容就行了。

Java stack information for the threads listed above:
===================================================
"Thread-4":
 at com.spareyaya.jvm.service.DeadLockService.service2(DeadLockService.java:35)
 - waiting to lock <0x00000000f5035ae0> (a java.lang.Object)
 - locked <0x00000000f5035af0> (a java.lang.Object)
 at com.spareyaya.jvm.controller.JVMController.lambda$deadLock$1(JVMController.java:41)
 at com.spareyaya.jvm.controller.JVMController$$Lambda$457/1776922136.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:748)
"Thread-3":
 at com.spareyaya.jvm.service.DeadLockService.service1(DeadLockService.java:27)
 - waiting to lock <0x00000000f5035af0> (a java.lang.Object)
 - locked <0x00000000f5035ae0> (a java.lang.Object)
 at com.spareyaya.jvm.controller.JVMController.lambda$deadLock$0(JVMController.java:37)
 at com.spareyaya.jvm.controller.JVMController$$Lambda$456/474286897.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:748)

Found 1 deadlock.

发现了一个死锁,原因也一目了然。

三、内存泄漏

我们都知道,java和c++的最大区别是前者会自动收回不再使用的内存,后者需要程序员手动释放。在c++中,如果我们忘记释放内存就会发生内存泄漏。但是,不要以为jvm帮我们回收了内存就不会出现内存泄漏。

程序发生内存泄漏后,进程的可用内存会慢慢变少,最后的结果就是抛出OOM错误。发生OOM错误后可能会想到是内存不够大,于是把-Xmx参数调大,然后重启应用。这么做的结果就是,过了一段时间后,OOM依然会出现。最后无法再调大最大堆内存了,结果就是只能每隔一段时间重启一下应用。

内存泄漏的另一个可能的表现是请求的响应时间变长了。这是因为频繁发生的GC会暂停其它所有线程(Stop The World)造成的。

为了模拟这个场景,使用了以下的程序

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class Main {

    public static void main(String[] args) {
        Main main = new Main();
        while (true) {
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            main.run();
        }
    }

    private void run() {
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < 10; i++) {
            executorService.execute(() -> {
                // do something...
            });
        }
    }
}

运行参数是-Xms20m -Xmx20m -XX:+PrintGC,把可用内存调小一点,并且在发生gc时输出信息,运行结果如下

[GC (Allocation Failure)  12776K->10840K(18432K), 0.0309510 secs]
[GC (Allocation Failure)  13400K->11520K(18432K), 0.0333385 secs]
[GC (Allocation Failure)  14080K->12168K(18432K), 0.0332409 secs]
[GC (Allocation Failure)  14728K->12832K(18432K), 0.0370435 secs]
[Full GC (Ergonomics)  12832K->12363K(18432K), 0.1942141 secs]
[Full GC (Ergonomics)  14923K->12951K(18432K), 0.1607221 secs]
[Full GC (Ergonomics)  15511K->13542K(18432K), 0.1956311 secs]
...
[Full GC (Ergonomics)  16382K->16381K(18432K), 0.1734902 secs]
[Full GC (Ergonomics)  16383K->16383K(18432K), 0.1922607 secs]
[Full GC (Ergonomics)  16383K->16383K(18432K), 0.1824278 secs]
[Full GC (Allocation Failure)  16383K->16383K(18432K), 0.1710382 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1829138 secs]
[Full GC (Ergonomics) Exception in thread "main"  16383K->16382K(18432K), 0.1406222 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1392928 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1546243 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1755271 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1699080 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1697982 secs]
[Full GC (Ergonomics)  16383K->16382K(18432K), 0.1851136 secs]
[Full GC (Allocation Failure)  16382K->16382K(18432K), 0.1655088 secs]
java.lang.OutOfMemoryError: Java heap space

可以看到虽然一直在gc,占用的内存却越来越多,说明程序有的对象无法被回收。但是上面的程序对象都是定义在方法内的,属于局部变量,局部变量在方法运行结果后,所引用的对象在gc时应该被回收啊,但是这里明显没有。

为了找出到底是哪些对象没能被回收,我们加上运行参数-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=heap.bin,意思是发生OOM时把堆内存信息dump出来。运行程序直至异常,于是得到heap.dump文件,然后我们借助eclipse的MAT插件来分析,如果没有安装需要先安装。

然后File->Open Heap Dump... ,然后选择刚才dump出来的文件,选择Leak Suspects。

 MAT会列出所有可能发生内存泄漏的对象

 

可以看到居然有21260个Thread对象,3386个ThreadPoolExecutor对象,如果你去看一下java.util.concurrent.ThreadPoolExecutor的源码,可以发现线程池为了复用线程,会不断地等待新的任务,线程也不会回收,需要调用其shutdown方法才能让线程池执行完任务后停止。

其实线程池定义成局部变量,好的做法是设置成单例。

上面只是其中一种处理方法

在线上的应用,内存往往会设置得很大,这样发生OOM再把内存快照dump出来的文件就会很大,可能大到在本地的电脑中已经无法分析了(因为内存不足够打开这个dump文件)。这里介绍另一种处理办法:

(1)用jps定位到进程号

C:\Users\spareyaya\IdeaProjects\maven-project\target\classes\org\example\net>jps -l
24836 org.example.net.Main
62520 org.jetbrains.jps.cmdline.Launcher
129980 sun.tools.jps.Jps
136028 org.jetbrains.jps.cmdline.Launcher

因为已经知道了是哪个应用发生了OOM,这样可以直接用jps找到进程号135988

(2)用jstat分析gc活动情况

jstat是一个统计java进程内存使用情况和gc活动的工具,参数可以有很多,可以通过jstat -help查看所有参数以及含义

C:\Users\spareyaya\IdeaProjects\maven-project\target\classes\org\example\net>jstat -gcutil -t -h8 24836 1000
Timestamp         S0     S1     E      O      M     CCS    YGC     YGCT    FGC    FGCT     GCT
           29.1  32.81   0.00  23.48  85.92  92.84  84.13     14    0.339     0    0.000    0.339
           30.1  32.81   0.00  78.12  85.92  92.84  84.13     14    0.339     0    0.000    0.339
           31.1   0.00   0.00  22.70  91.74  92.72  83.71     15    0.389     1    0.233    0.622

上面是命令意思是输出gc的情况,输出时间,每8行输出一个行头信息,统计的进程号是24836,每1000毫秒输出一次信息。

输出信息是Timestamp是距离jvm启动的时间,S0、S1、E是新生代的两个SurvivorEden,O是老年代区,M是Metaspace,CCS使用压缩比例,YGC和YGCT分别是新生代gc的次数和时间,FGCFGCT分别是老年代gc的次数和时间,GCT是gc的总时间。虽然发生了gc,但是老年代内存占用率根本没下降,说明有的对象没法被回收(当然也不排除这些对象真的是有用)。

(3)用jmap工具dump出内存快照

jmap可以把指定java进程的内存快照dump出来,效果和第一种处理办法一样,不同的是它不用等OOM就可以做到,而且dump出来的快照也会小很多。

jmap -dump:live,format=b,file=heap.bin 24836

这时会得到heap.bin的内存快照文件,然后就可以用eclipse来分析了。

四、总结

以上三种严格地说还算不上jvm的调优,只是用了jvm工具把代码中存在的问题找了出来。我们进行jvm的主要目的是尽量减少停顿时间,提高系统的吞吐量。

但是如果我们没有对系统进行分析就盲目去设置其中的参数,可能会得到更坏的结果,jvm发展到今天,各种默认的参数可能是实验室的人经过多次的测试来做平衡的,适用大多数的应用场景。

如果你认为你的jvm确实有调优的必要,也务必要取样分析,最后还得慢慢多次调节,才有可能得到更优的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/364838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WebGL和OpenGL的区别及关系

什么是WebGLWebGL™是一个跨平台的&#xff0c;免版税的开放Web标准&#xff0c;用于基于OpenGL ES的低级3D图形API&#xff0c;通过HTML5 Canvas元素向ECMAScript公开。熟悉OpenGL ES 2.0的开发人员将使用GLSL将WebGL识别为基于Shader的API&#xff0c;其构造在语义上与底层Op…

FISCO BCOS(二十七)———java操作WeBase

一、搭建fiscobcos环境 1.1、安装jdk1.8 https://blog.csdn.net/weixin_46457946/article/details/1232435131.2、安装mysql https://blog.csdn.net/weixin_46457946/article/details/1232447361.3、安装python https://blog.csdn.net/weixin_46457946/article/details/123…

Lookup argument总览

1. 引言 详情参看Ingonyama团队Tomer 2023年论文《A Brief History of Lookup Arguments》。 Bootle等人2018年论文《Nearly linear-time zero-knowledge proofs for correct program execution》中首次提出了lookup协议&#xff0c;用于证明如下statement&#xff1a; 此处…

Python socket之TCP通信、下载文件

TCP简介TCP介绍TCP协议&#xff0c;传输控制协议&#xff08;英语&#xff1a;Transmission Control Protocol&#xff0c;缩写为 TCP&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议&#xff0c;由IETF的RFC 793定义。TCP通信需要经过创建连接、数据传送、…

手撕八大排序(上)

排序的概念及其引用&#xff1a; 排序的概念&#xff1a; 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有…

Linux上基于PID找到对应的进程名以及所在目录

Linux上基于PID找到对应的进程名以及所在目录前言找到进程的pid通过top命令查看通过 ps -ef |grep nignx进行查看通过端口号进行查看查看nginx进程目录前言 在一台新接触的服务器&#xff0c;却不熟悉搭建所在目录的时候&#xff0c;这时候就就可以通过ps查找进程&#xff0c;并…

巧用性格上的差异来组建团队

你好&#xff0c;我是得物 App 交易平台及中间件平台的 Team Leader Alan。 组建团队过程中&#xff0c;你有没有遇到过类似的场景&#xff1a;团队中某些人之间总是互相不对付、气场不合&#xff0c;不管是日常沟通中还是方案对齐&#xff0c;总是会出现面红耳赤的场面。 从…

Linux_线程概念

进程回顾 在学习线程之前&#xff0c;我们先回顾一下之前讲的进程概念 当我们创建一个进程&#xff0c;操作系统会将磁盘中的代码load到内存中&#xff0c;然后创建当前进程的task_struct&#xff08;后面可能会用”PCB“或者”进程控制块“代替&#xff09;&#xff0c;创建…

egg+vue实现登录功能【解决vue中登录的潜在问题】

前后端登录功能实现前言一、cookie和session二、代码呈现1.egg部门代码2.vue代码过程前言 记忆在时间面前总是不堪一击&#xff01; 本人的记录&#xff0c;下面内容仅供参考&#xff0c;如有什么什么&#xff0c;请自行解决。 一、cookie和session 不多赘述&#xff0c;详情…

大数据Hadoop教程-学习笔记03【Hadoop MapReduce与Hadoop YARN】

视频教程&#xff1a;哔哩哔哩网站&#xff1a;黑马大数据Hadoop入门视频教程教程资源: https://pan.baidu.com/s/1WYgyI3KgbzKzFD639lA-_g 提取码: 6666【P001-P017】大数据Hadoop教程-学习笔记01【大数据导论与Linux基础】【17p】【P018-P037】大数据Hadoop教程-学习笔记02【…

风险的定义以及CAPM 和 APT

文章目录风险定义&#xff1a;CAPMAPT&#xff08;Arbitrage Pricing Theory&#xff09;套利定价模型风险定义&#xff1a; 投资组合的收益率等于组合中各资产收益率的加权平均&#xff0c;但是投资组合的标准差并不等于组合中各资产标准差的加权平均&#xff0c;而是小于等于…

Git 详细教程

目录1.简介&#xff1a;2.安装Git3.Git 如何工作状态区域4.使用Git5.Git配置5.1 创建仓库 - repository5.2 配置5.2.1 --global5.2.2 检查配置6. 查看工作区的文件状态6.1什么是工作区6.2 如果显示乱码的解决方式7.在工作区添加单个文件8. 添加工作区文件到暂存区9. 创建版本10…

数据结构与算法(二)(Python版)

数据结构与算法&#xff08;一&#xff09;&#xff08;Python版&#xff09; 文章目录递归动规初识递归&#xff1a;数列求和递归三定律递归的应用&#xff1a;任意进制转换递归的应用&#xff1a;斐波那契数列递归调用的实现分治策略与递归优化问题和贪心策略找零兑换问题贪心…

RocketMQ-基本概念

主题&#xff08;Topic&#xff09; Apache RocketMQ 中消息传输和存储的顶层容器&#xff0c;用于标识同一类业务逻辑的消息。主题通过TopicName来做唯一标识和区分。 主题的作用主要如下&#xff1a; 定义数据的分类隔离&#xff1a; 在 Apache RocketMQ 的方案设计中&…

挚文集团短期内不适合投资,长期内看好

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 挚文集团&#xff08;MOMO&#xff09;在新闻稿中称自己是“中国在线社交和娱乐领域的领军企业”。 该公司旗下的陌陌是中国“陌生人社交网络”移动应用类别的领导者&#xff0c;并在2022年9月拥有超过1亿的月活跃用户。探…

Eotalk Vol.03:结合 API DaaS,让使用数据更方便

Eotalk 是由 Eolink CEO 刘昊臻发起的泛技术聊天活动&#xff0c;每期都会邀请一些技术圈内的大牛聊聊天&#xff0c;聊些关于技术、创业工作、投融资等热点话题。 Eotalk 的第 3 期&#xff0c;很高兴邀请到 Tapdata CEO TJ 唐建法&#xff0c;TJ 可以说是一位超级大咖&#x…

ESP32-C3 BLE5.0 扩展蓝牙名称长度的流程

蓝牙设备名称长度受限于蓝牙广播数据包的长度&#xff0c;如果广播数据包的长度不能包含完整的设备名称&#xff0c;则只显示短名称&#xff0c;其余不能容纳的部分将被截断。ESP32-C3 支持 BLE5.0&#xff0c;最大广播包长支持 1650 字节&#xff0c;可通过 esp_ble_gap_confi…

Windows下SecureCRT的下载、安装、使用、配置【Telnet/ssh/Serial】

目录 一、概述 二、SecureCRT的下载、安装 三、SecureCRT的使用  &#x1f449;3.1 使用SSH协议连接Linux开发主机  &#x1f449;3.2 使用Serial(串口)协议连接嵌入式开发板  &#x1f449;3.3 使用Telnet协议连接嵌入式开发板 四、SecureCRT配置会话选项  &#x1f3a8;4…

将Nginx 核心知识点扒了个底朝天(九)

Nginx 如何实现后端服务的健康检查&#xff1f; 方式一&#xff0c;利用 nginx 自带模块 ngx_http_proxy_module 和 ngx_http_upstream_module 对后端节点做健康检查。 方式二(推荐)&#xff0c;利用 nginx_upstream_check_module 模块对后端节点做健康检查。 Nginx 如何开启…

Homekit智能家居DIY一智能通断开关

智能通断器&#xff0c;也叫开关模块&#xff0c;可以非常方便地接入家中原有开关、插座、灯具、电器的线路中&#xff0c;通过手机App或者语音即可控制电路通断&#xff0c;轻松实现原有家居设备的智能化改造。 随着智能家居概念的普及&#xff0c;越来越多的人想将自己的家改…