深度学习无监督磁共振重建方法调研(二)

news2024/11/29 20:50:04

深度学习无监督磁共振重建方法调研(二)

  • Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data(Magnetic Resonance in Medicine 2020)
    • 模型设计
    • 实验结果
  • PARCEL: Physics-based Unsupervised Contrastive Representation Learning for Multi-coil MR Imaging(IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS)
    • 问题定义与模型设计
    • 损失函数
      • Undersample Calibration Loss
      • Reconstructed Calibration Loss
      • Contrastive Representaion Loss
    • 实验结果

Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data(Magnetic Resonance in Medicine 2020)

本文提出了一种基于自监督方式训练神经网络用于磁共振重建的方式,并通过在公开数据集(fastMRI multi-coil knee)以及前瞻性加速脑成像图(没有GT数据的?)上的数值和人工衡量,证明了方法的有效性。

模型设计

对于完整采样的mask Ω \Omega Ω,作者将其划分成为了两个mask, Θ \Theta Θ Λ \Lambda Λ,其中 Θ \Theta Θ用于训练(生成输入的降采样数据和应用数据一致层), Λ \Lambda Λ用于定义损失函数,即衡量输出结果在 Λ \Lambda Λ采样的部分是否和真实数据一致。注意测试时会将所有采样点全部输入生成结果。
模型设计
作者采用了normalized l2-l1损失进行训练,模型方法和对标的有监督方法都在K空间定义损失:
损失函数
在Mask选择上,作者定义 ρ = ∣ Λ ∣ / ∣ Ω ∣ \rho=|\Lambda|/|\Omega| ρ=∣Λ∣/∣Ω∣,选择了表现最好的值(膝盖数据集是0.4),并且做了三个变体,主要区别是 Λ \Lambda Λ Θ \Theta Θ的重叠:

  • 无重叠(原始设定)
  • 重叠50%
  • 重叠100%

最后发现原始设定最好。作者还在不同的 ρ \rho ρ下验证了不同的随机降采样方式,发现高斯比均匀降采样好,因此选择高斯降采样。

实验结果

作者在fastMRI的多线圈Knee上做了实验(4倍降采样),对比了有监督方法,无监督方法和传统CS重建方法,看起来提出的方法好于传统方法,和有监督方法相当。
fastMRI_knee实验
其它实验结果就不赘述了。

PARCEL: Physics-based Unsupervised Contrastive Representation Learning for Multi-coil MR Imaging(IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS)

同样是王珊珊团队的工作,可以看作是SelfCoLearn的进阶版,对多线圈成像做了更多的讨论。

问题定义与模型设计

和单线圈磁共振成像不同的是,除了降采样矩阵 Ω \mathbf{\Omega} Ω和傅里叶变换 F F F外,还包括了线圈敏感度信息 S S S,下式中 ϵ \epsilon ϵ表示噪声,下标 i i i表示线圈, C C C为线圈数:
PARCEL:多线圈成像

和SelfCoLearn一样,模型也分为了两个子网络,输入的数据经过了re-降采样( A j A_j Aj),求解的问题的表示如下所示:
PAECEL:问题定义
其中 A j = Ω i F S A_j=\mathbf{\Omega_i}FS Aj=ΩiFS j j j用于表示两个子网络。网络用 D w D_w Dw表示,采用MoDL结构(因为是在每次迭代中共享权重,所以 D w D_w Dw也可以用来表示整个网络),输出为 x 1 x_1 x1 x 2 x_2 x2
PARCEL:模型结构

损失函数

模型设计了精巧的co-training loss,包含三个部分,总公式如下, L L L为样本总数,不过根据代码,三种损失并不是1:1:1,而是1:0.1:0.1。
PARCEL:损失函数

Undersample Calibration Loss

表示为 l u c l_{uc} luc,主要是确保重建后的结果在所有采样位置(未经过re-降采样)和已知的结果一致:
PARCEL:UC损失函数

Reconstructed Calibration Loss

表示为 l r c l_{rc} lrc,其将 x x x(这里只是表示损失函数的输入,实际使用中的输入就是两个子网络的输出 x 1 x_1 x1或者 x 2 x_2 x2), E E E表示 F S FS FS E H E^H EH表示 S F − 1 SF^{-1} SF1
PARCEL:RC损失
从式子上看,是希望将输出的重建结果的真实采样部分替换为真实值 y y y后得到的图像,和不替换也尽可能相似。不过这样的话似乎和 l u c l_{uc} luc没什么区别?只不过一个比的是零填充其余部分,一个比的是用重建值填充其余部分的图像的MSE损失,这有影响吗?

Contrastive Representaion Loss

表示为 l c l l_{cl} lcl,用来尽可能增加两个自网络输出结果的相似性:
PARCEL:CL损失
特别注意的是这里的 z z z是输出经过额外一个1024大小的全连接层+ReLU的expander来实现的, z 1 = h 1 ( x 1 ) z_1=h_1(x_1) z1=h1(x1) z 2 = h 2 ( x 2 ) z_2=h_2(x_2) z2=h2(x2) s i m ( ) sim() sim()采用余弦相似度,作者通过该损失函数最大化两个网络输出的相似。不过从代码上来看 h 1 = h 2 h_1=h_2 h1=h2

实验结果

作者在fastMRI的多线圈膝盖数据集和一个自己的大脑数据集上做了实验,尝试了三种不容的降采样mask。对比了SENSE,Variational-Net,U-Net-256,SSDU(上一篇文章),Supervised-MoDL。反正结果基本是仅次于Supervised MoDL。

作者验证了Contrastive Loss的作用,使用只使用单个网络自监督Single-Net(没说什么方法,应该是UC损失),只使用UC的PARCEL模型Parallel-Net,加入了CL损失的PARCEL模型CL,对比如下:
Contrastive损失的作用
下一节中进行了更详细的比较,如下:
PARCEL:消融实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/363775.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何保证数据的安全?对称和非对称加密,身份认证,摘要算法,数字证书等傻傻分不清?波哥图解带你彻底掌握

支付安全 1.基础概念 明文:加密前的消息叫“明文”(plain text) 密文:加密后的文本叫“密文”(cipher text) 密钥:只有掌握特殊“钥匙”的人,才能对加密的文本进行解密,…

功能测试三年,是时候做出改变了

前言 测试行业3年多经验,学历大专自考本科,主要测试方向web,PC端,wap站,小程序公众号都测试过,app也测过一些,C端B端都有,除功能外,接口性能也有涉猎,但是不…

day32 多线程(上)

文章目录相关概念codeThreadTest01ThreadTest02 编写一个类,直接继承java.lang.Thread,重写run方法ThreadTest03 实现线程的第二种方法ThreadTest04 采用匿名内部类的方式ThreadTest05 获取线程名字ThreadTest06 sleep方法sleep面试题ThreadTest08 终止线…

不同路径-力扣62-java 动态规划

一、题目描述一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径&#xff1f…

H12-831题库(有详细的解析)

1.(单选)某工程师利用2台路由器进行IPv6业务测试,通过运行BGP4模拟总部与分支的互联互通。如图所示,某工程师抓包查看R1发出的update报文。关于该报文信息的描述,以下哪个说法是正确的? A.该报文描述的路由的下一跳地址为:2001:db8::2345:1::1 B.该报文…

基于Pytorch,从头开始实现Transformer(编码器部分)

Transformer理论部分参考知乎上的这篇文章 Transformer的Attention和Masked Attention部分参考知乎上的这篇文章 Transformer代码实现参考这篇文章,不过这篇文章多头注意力实现部分是错误的,需要注意。 完整代码放到github上了,链接 Trans…

ASE50N06-ASEMI低压MOS管ASE50N06

编辑-Z ASE50N06在TO-252-2L封装里的静态漏极源导通电阻(RDS(ON))为15mΩ,是一款N沟道低压MOS管。ASE50N06的最大脉冲正向电流ISM为200A,零栅极电压漏极电流(IDSS)为1uA,其工作时耐温度范围为-55~175摄氏度。ASE50N06…

2年手动测试,裸辞后找不到工作怎么办?

我们可以从以下几个方面来具体分析下,想通了,理解透了,才能更好的利用资源提升自己。一、我会什么?先说第一个我会什么?第一反应:我只会功能测试,在之前的4年的中我只做了功能测试。内心存在一种…

LDPC码的编译码原理简述

关于fpga调用ldpc IP core的相关参数问题可以看我的另一篇文章 LDPC码由Gallager在1962年提出,全称为 Low Density Parity-check Codes 低密度奇偶校验码 它的译码性能可以逼近Shannon信道容量限,广富盛名的Turbo码也被证明是LDPC码的一个特例。并且LDPC…

软件测试简单么,如何自学?

软件测试是不是简单其实需要自己学习了才知道,难易程度对于不同的人来说都是不一样的。都是需要实际去尝试了之后才知道。也要看是和谁对比,对于java这种来说肯定是容易多了。 软件测试其实算是互联网三大技术岗位中最轻松的工种,但是你学起…

idea中的Maven导包失败问题解决总结

idea中的Maven导包失败问题解决总结 先确定idea和Maven 的配置文件settings 没有问题 找到我们本地的maven仓库,默认的maven仓库路径是在\C:\Users\用户名.m2下 有两个文件夹,repositotry是放具体jar包的,根据报错包的名,找对应文…

重识html

html 重识html 万维网用url统一资源定位符标识分布因特网上的各种文档 各种概念 URL: 统一资源定位器 它是WWW的统一资源定位标志,就是指网络地址 在WWW上,每一信息资源都有统一的且在网上唯一的地址 网页: 由文字 图片 视频 音乐各种元素排列组…

面试热点题:stl中vector与list的优缺点对比、以及list的迭代器与vector迭代器的区别

vector的优点 下标随机访问 vector的底层是一段连续的物理空间,所以支持随机访问尾插尾删效率高 跟数组类似,我们能够很轻易的找到最后一个元素,并完成各种操作cpu高速缓存命中率高 因为系统在底层拿空间的时候,是拿一段进cpu&am…

软件测试5年,一路走来的艰辛路程

前言 不论你是什么时候开始接触测试这个行业的,你首先听说的应该是功能测试。通过一些测试手段来验证开发做出的代码是否符合产品的需求?当然你也有自己对功能测试的理解,但是最近两年感觉功能测试好像不太受欢迎,同时不少同学真的…

JavaEE简单示例——动态SQL之更新操作<set>元素

简单介绍: 在之前我们做的学生管理系统的时候,曾经有一个环节是修改学生的数据。我们在修改的时候是必须将student对象的三个属性全部填入信息,然后全部修改才可以,这样会造成一个问题就是在我们明明只需要修改一个属性的时候却要…

华为外包测试2年,不甘被替换,168天的学习转岗成正式员工

我25岁的时候,华为外包测试,薪资13.5k,人在深圳。 内卷什么的就不说了,而且人在外包那些高级精英年薪大几十的咱也接触不到,就说说外包吧。假设以我为界限,25岁一线城市13.5k,那22-24大部分情况…

干货|最全焊接不良汇总,你知道如何避免吗?

良好的焊接,是保证电路稳定持久工作的前提。下面给出了常见的8种焊接缺陷,看看你遇到过多少种?焊接中的常见问题一、锡珠形成原因:渣或杂质:在焊接过程中,如果焊接区域附近有过多的杂质或者脏污&#xff0c…

毕业论文图片格式、分辨率选择及高质量Word转PDF方法

已知1:毕业论文盲评通常需要提交PDF文件。 已知2:PDF文件太大可能会导致翻页卡顿以及上传盲评网站失败。 已知3:Word转PDF方法不当可能会导致图像模糊。 已知4:打印机分辨率通常为300dpi。 问题1:论文插图分辨率设置…

分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测

分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测 目录分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测分类效果基本描述模型描述程序设计参考资料分类效果 基本描述 1.Matlab实现WOA-CNN-LSTM多特征分类预测&…

关于一个Java程序员马上要笔试了,临时抱佛脚,一晚上恶补45道简单SQL题,希望笔试能通过

MySQL随手练 / DQL篇 MySQL随手练——DQL篇 题目网盘下载:https://pan.baidu.com/s/1Ky-RJRNyfvlEJldNL_yQEQ?pwdlana 初始数据 表 course 表 student 表 teacher 表 sc 答案 :) —> :( —> :) 1. 查询 "01"课程比"02"课程成绩高的学生…